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Chapter

Introduction

The book is provides a series of tutorials (and accompanying data files) to fit animal model in R using different
packages (ASReml-R, gremlin, MCMCglmm and brms/stan) . You will need to carefully follow the instructions
below to first download the data files and second install the R packages. Before beginning the tutorial, we assume the
reader has successfully installed the chosen R package on their computer and has saved the required data files to an
appropriate directory from which they will be read. Full instructions for how to do this are provided with software

distributions.

To work though the different tutorial I would recommend to create a folder where you will save your different R

scripts for the tutorials.

In addition, the tutorial is here to help researchers in their coding and understanding of models and outputs, but it is

required that you read and understand the literature in quantitative genetics and animal model.

1.1. Data

1.1.1. Data files

You will need to download 3 data files for the tutorial in R:

* gryphon.csv: data on gryphon birth weight and morphology
* gryphonRM.csv: data on gryphon repeated measurement of lay date.

* gryphonped.csv: data on the associated pedigree of the data gryphon



Chapter 1. Introduction

In addition, some models presented in the tutorials can take a while to run (sometimes > 1 hour), thus we are also
providing the model outputs to allow you continue the tutorial without waiting for the model to run. (But you are

free to run models)

The files are available here I recommend to save the data and Rdata files in a subfolder data in the folder you will
use as your working directory for R and where you will save your R scripts. It should be noted that the tutorial are

using this structure to read or save data.

1.1.2. Notes on data and pedigree

It is always important to take time to think carefully about the strengths and potential limitations of your
pedigree information before embarking on quantitative genetic analyses. Pedigree Viewer, written by Brian
Kinghorn, is an extremely useful application for visualizing pedigrees, and can be downloaded from: http://www-
personal.une.edu.au/~bkinghor/pedigree.htm. Pedantics an R package written by Michael Morrissey and
distributed through CRAN (http://cran.r-project.org/) can also be used for this and offers some nice additional
features for visualizing pedigree structures and generating associated statistics. Before you begin running through
the tutorials, we advise taking a moment to look at the pedigree files provided with them using Pedigree Viewer or

Pedantics.

1.2. R

You should check that you have the most current version of R and R packages. You can check the number of the
current version on CRAN. If you need to update (or install) R packages, use install.packages () and follow the

prompted instructions.

1.2.1. R packages

1.2.1.1. asreml-r

ASReml-R is commercial software published by VSN international (http://www.vsni.co.uk/software/asreml/). This

package is not free and requires a key access. Additional information and guide can be find in the Asreml-R manual:

(https://asreml.kb.vsni.co.uk/wp-content/uploads/sites/3/2018/02/ASReml-R-Reference-Manual-4.pdf)



https://github.com/JulienGAMartin/wam_tuto/tree/master/data

1.2. R

1.2.1.2. gremlin

gremlin is a little monster appearing if you feed a mugwai after midnight. It is also a great and promising software

written by Pr. Matthew E. Wolak to fit mixed models using a frequentist approach .

1.2.1.3. MCMCglmm

MCMCglmm is an R package for Bayesian mixed model analysis written by Pr. Jarrod Hadfield. It is a freeware
distributed through CRAN (http://cran.r-project.org/). Information and guide about the package can be find in the
user manual and vignettes (http://cran.r-project.org/web/packages/MCMCglmm/index.html). Reference: (Hadfield
2010).

This module provides some information that applies to MCMCglmm-based analyses in general, but that will not
be included in other tutorials. Most importantly, this applies to some of the simplest ways of determining the
performance of a run using MCMCglmm, i.e., verification of the validity of of the posterior distribution. This
tutorial is not a substitute for working through the MCMCglmm course notes, which is available from CRAN
(the Comprehensive R ArchiveNetwork, http://cran.r-project.org/, or can be accessed in R using the command
vignette(“CourseNotes”,“MCMCglmm”)). These tutorials do not introduce one of the main advantages of using
MCMCglmm for analyses of data from natural populations -the ability to properly model non-normal responses.
These capabilities are introduced in the documentation that is distributed with MCMCglmm, and available from
CRAN. Another specific animal guide for MCMCglmm can be find (https://devillemereuil.legtux.org/wp-content/up-
loads/2021/09/tuto_en.pdf). Pr. Pierre de Villemereuil provide more information in Bayesian concept and focus

more on non-gaussian variable.

1.2.1.4. brms

brms provides an interface to fit Bayesian generalized multivariate (non-)linear multilevel models using Stan,
which is a C++ package for obtaining full Bayesian inference (see https://mc-stan.org/). The formula syntax is an
extended version of the syntax applied in the ‘lme4’ package to provide a familiar and simple interface for performing

regression analyses.

It should be noted that if brms is able to fit animal model the parametrization used is not the most efficient and can

take quite longer than using a different parametrization directly in stan.
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Univariate animal model



Scenario and data

This tutorial will demonstrate how to run a univariate animal model to estimate genetic variance in birth weight in

the mighty gryphons.

Scenario and data

Scenario

In a population of gryphons there is strong positive selection on birth weight with heavier born individuals having,
on average higher fitness. To find out whether increased birth weight will evolve in response to the selection, and if

so how quickly, we want to estimate the heritability of birth weight.

Data files

Open gryphonped.csv and gryphon. csv in your text editor. The structure and contents of these files is fairly
self-explanatory. The pedigree file gryphonped. csv contains three columns containing unique IDs that correspond
to each animal, its father, and its mother. Note that this is a multigenerational pedigree, with the earliest generation (for
which parentage information is necessarily missing) at the beginning of the file. For later-born individuals maternal

identities are all known but paternity information is incomplete (a common situation in real world applications).

The phenotype data, as well as additional factors and covariates that we may wish to include in our model are
contained in gryphon. csv. Columns correspond to individual identity (animal), maternal identity (mother), year
of birth (byear), sex (sex, where 1 is female and 2 is male), birth weight (bwt), and tarsus length (tarsus). Each
row of the data file contains a record for a different offspring individual. Note that all individuals included in the data

file must be included as offspring in the pedigree file.

We can read the data file, using read. csv() which consider by default that NA is the symbol for missing values and

that the first line of the file contains the column headers.

It is a good idea to make sure that all variables are correctly assigned as numeric or factors:

gryphon$animal <- as.factor(gryphon$animal)
gryphon$mother <- as.factor(gryphon$mother)
gryphon$byear <- as.factor(gryphon$byear)
gryphon$sex <- as.factor(gryphon$sex)

gryphon$bwt <- as.numeric(gryphon$bwt)




gryphon$tarsus <- as.numeric(gryphon$tarsus)

str (gryphon)

'data.frame': 1084

$ animal: Factor w/

®“ H H Bh B

tarsus: num 24.8

obs. of 6 variables:

1084 levels "1","2","3","5",..: 864 1076 549 989 1030 751 987 490 906 591 ..

mother: Factor w/ 429 levels "1",6"2" "3" "g" . : 362 268 216 375 396 289 328 255 347 240 ...
byear : Factor w/ 34 levels "968","970","971",..: 1122223333 ...
sex : Factor w/ 2 levels "1","2": 1121212111 ...

bwt :num 10.77 9.3 3.98 5.39 12.12 ...

22.5 12.9 20.5 NA ...

Similarly we can read in the pedigree file, using read.csv() which consider by default that NA is the symbol for

missing values and that the first line of the file contains the column headers.

'data.frame': 1309

$ id : int 1306

obs. of 3 variables:

1304 1298 1293 1290 1288 1284 1283 1282 1278 ...

$ father: int NA NA NA NA NA NA NA NA NA NA ...

$ mother: int NA NA NA NA NA NA NA NA NA NA ...

gryphonped$id <- as.factor(gryphonped$id)

gryphonped$father <-
gryphonped$mother <-

str(gryphonped)

'data.frame': 1309
$ id : Factor w/
$ father: Factor w/

$ mother: Factor w/

as.factor(gryphonped$father)

as.factor(gryphonped$mother)

obs. of 3 variables:
1309 levels "im, m"2m n3nw w4qn .. 1306 1304 1298 1293 1290 1288 1284 1283 1282
158 levels "4","13","18",..: NA NA NA NA NA NA NA NA NA NA ...

429 levels "1","2","3","8",..: NA NA NA NA NA NA NA NA NA NA ...

Now that we have imported the data and the pedigree file, we are ready to fit an animal model.
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Asreml|-R

2.0.1. Running the model
First we need to load the asreml library:

library(asreml)

Loading required package: Matrix

Online License checked out Fri Apr 5 15:28:38 2024

Loading ASReml-R version 4.2

To be able to fit an animal model, Asreml-r needs (the inverse of) the relationship matrix using the ainverse function:

ainv <- ainverse(gryphonped)

We are now ready to specify our first model:

modell <- asreml(

fixed = bwt ~ 1, random = ~ vm(animal, ainv),

residual = ~ idv(units),

data = gryphon,

na.action = na.method(x = "omit", y = "omit")
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ASReml Version 4.2 05/04/2024 15:28:38

LogLik Sigma2 DF wall
1 -4128.454 1.0 8563  15:28:38
2 -3284.272 1.0 8563  15:28:38
3 -2354.992 1.0 8563  15:28:38
4 -1710.357 1.0 8563  15:28:38
5 -1363.555 1.0 853 15:28:38
6 -1263.516 1.0 8563  15:28:38
7 -1247.854 1.0 8563  15:28:38
8 -1247.185 1.0 8563  15:28:38
9 -1247.183 1.0 8563  15:28:38

In this model, bwt is the response variable and the only fixed effect is the intercept, denoted as 1. The only random
effect we have fitted is animal, which will provide an estimate of V4. Our random animal effect is connected to
the inverse related matrix ainv which integrate the relativeness or pedigree information.

data= specifies the name of the dataframe that contains our variables. Finally, we inform asreml () what to when
it encounters NAs in either the dependent or predictor variables (in this case we choose to remove the records).
If you use the argument “include” instead of “omit”, model will keep the NA. With x="include”, the model will
exchange NA with 0. Be careful you need to standardize your trait so the mean will be equal to 0, if not estimates
(including covariance in multivariate models) could be strongly biased due to the the missing values considered as
0. y="include” will exchange NA with a factor labeled mv which will be included in the sparse equation. For more

details see Asreml-R manual.

A note of the specification of the structure of the residuals: This simple univariate model will run fine without
residual=~idv(units). However, if you are going to use vpredict () to calculate the heritability (see below),

without specifying the residuals in this way will result in a standard error for the heritability that is incorrect.

Any model has assumption which need to be checked. The model can be plot which help visualizing the distribution

of the model residual and check the different assumptions.

plot (modell)
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To see the estimates for the variance components, we run:

summary (modell) $varcomp

component std.error z.ratio bound %ch

vm(animal, ainv) 3.395398 0.6349915 5.347154 P 0
units!units 3.828602 0.5185919 7.382687 P 0
units!R 1.000000 NA NA F 0

We fitted a single random effect so we partitioned the phenotypic variance into two components. The vm(animal,
ainv) variance component is V4 and is estimated as 3.4. Given that the ratio of V4 to its standard error (z.ratio)
is considerably larger than 2 (i.e. the parameter estimate is more than 2 SEs from zero), this looks likely to be
significant. The units!units component refers to the residual variance V5, and units$R should be ignored. If
you don’t include residual=~idv(units)in your model specification, units$R will provide you with the residual

variance.

2.0.2. Estimating heritability

We can calculate the h? of birth weight from the components above since h? =V, /Vp =V, /(V, + Vg). Thus
according to this model, h?=34/3.4+3.83)=0.47.
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Alternatively we can use the vpredict () function to calculate 22 and its standard error. vpredict () function has
two structures, first the model used (here model1) and then the estimate name with its associated equation. The
equation used different V and their associated numbers depend of the order of the different random and residual

effects included in the model.

vpredict (modell, h2.bwt ~ V1 / (V1 + V2))

Estimate SE

h2.bwt 0.4700163 0.07650881

2.0.3. Adding fixed effects

To add fixed effects to a univariate model, we simply modify the model statement. For example, we might know (or

suspect) that birth weight is a sexually dimorphic trait and therefore fit in the model.

model2 <- asreml(
fixed = bwt ~ 1 + sex,
random = ~ vm(animal, ainv),
residual = ~ idv(units),
data = gryphon,

na.action = na.method(x = "omit", y = "omit")

ASReml Version 4.2 05/04/2024 15:28:40

LogLik Sigma2 DF wall
1 -3364.126 1.0 852  15:28:40
2 -2702.117 1.0 852  15:28:40
3 -1978.916 1.0 852  15:28:40
4 -1487.834 1.0 852  15:28:40
5 -1236.350 1.0 852  15:28:40
6 -1172.771 1.0 852  15:28:40
7 -1165.270 1.0 852  15:28:40
8 -1165.093 1.0 852  15:28:40
9 -1165.093 1.0 852  15:28:40

10



Now we can look at the fixed effects parameters and assess their significance with a conditional Wald F-test:

solution std error z.ratio
(Intercept) 6.058669 0.1718244 35.26082
sex_1 0.000000 NA NA

sex_2 2.206996 0.1619974 13.62365

ASReml Version 4.2 05/04/2024 15:28:40

LogLik Sigma?2 DF wall
1 -1165.093 1.0 852  15:28:40
2 -1165.093 1.0 852  15:28:40

$Wald

Df denDF F.inc F.con Margin Pr
(Intercept) 1 251 3491.0 3491.0 0
sex 1 831 185.6 185.6 A O
$stratumVariances

df Variance vm(animal, ainv) units!units

vm(animal, ainv) 752.28476 5.957254 0.9864077 1
units!units 99.71524 2.938413 0.0000000 1

The very small probability (Pr) in the Wald test above shows that sex is a highly significant fixed effect, and from
the parameter estimates (summary (model2, coef=T) $coef . fixed) we can see that the average male (sex 2) is 2.2
kg (£ 0.16 SE) heavier than the average female (sex 1). However, when we look at the variance components in the

model including sex as a fixed effect, we see that they have changed slightly from the previous model:

summary (model2) $varcomp

component std.error z.ratio bound %ch

vm(animal, ainv) 3.060441 0.5243571 5.836558 P 0
units!units 2.938412 0.4161473 7.060991 P 0
units!R 1.000000 NA NA F 0

11
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In fact since sex effects were previously contributing to the residual variance of the model, our estimate of Vp
(denoted units!R in the output) is now slightly lower than before. This has an important consequence for estimating
heritability since if we calculate Vp as V4 +V 5 then as we include fixed effects we will soak up more residual variance
driving Vp. Assuming that V4 is more or less unaffected by the fixed effects fitted then as Vp goes down we expect

our estimate of h? will go up:

(h2.1 <- vpredict(modell, h2.bwt ~ Vi / (V1 + V2)))

Estimate SE

h2.bwt 0.4700163 0.07650881

(h2.2 <- vpredict(model2, h2.bwt ~ V1 / (V1 + V2)))

Estimate SE

h2.bwt 0.510171 0.07432388

Here h? has increased slightly from 0.47 to 0.51. Which is the better estimate? It depends on what your question is.
The first is an estimate of the proportion of variance in birth weight explained by additive effects, the latter is an

estimate of the proportion of variance in birth weight after conditioning on sex that is explained by additive effects.

An important piece of advice, each researcher should be consistent in how they name their estimates and always

correctly describe which estimates they are using conditional or not (to avoid any confusion).

2.0.4. Adding random effects

This is done by simply modifying the model statement in the same way. For instance fitting:

model3 <- asreml(
fixed = bwt ~ 1 + sex,
random = ~ vm(animal, ainv) + byear,
residual = ~ idv(units),
data = gryphon,

na.action = na.method(x = "omit", y = "omit")

12



ASReml Version 4.2 05/04/2024 15:28:40

LogLik Sigma2 DF wall
1 -2742.658 1.0 852  15:28:40
2 -2237.268 1.0 852  15:28:40
3 -1690.453 1.0 852  15:28:40
4 -1328.910 1.0 852  15:28:40
5 -1154.597 1.0 852  15:28:40
6 -1116.992 1.0 852  15:28:40
7 -1113.809 1.0 852  15:28:40
8 -1113.772 1.0 852  15:28:40
9 -1113.772 1.0 852  15:28:40

summary (model3) $varcomp

component std.error z.ratio bound %ch

byear 0.8862604 0.2695918 3.287416 P 0
vm(animal, ainv) 2.7068665 0.4422140 6.121169 P 0
units'units 2.3092415 0.3451025 6.691466 P 0
units!R 1.0000000 NA NA F 0

(h2.3 <- vpredict(model3, h2.bwt ~ V2 / (V1 + V2 + V3)))

Estimate SE

h2.bwt 0.4586068 0.06740364

Here the variance in bwt explained by byear is 0.89 and, based on the z.ratio, appears to be significant (>2).
Thus we would conclude that year-to-year variation (e.g., in weather, resource abundance) contributes to V. Note
that although V4 has changed somewhat, as most of what is now partitioned as a birth year effect was previously
partitioned as V. Thus what we have really done here is to partition environmental effects into those arising
from year-to-year differences versus everything else, and we do not really expect much change in h? (since now

h2 — VA/(VA + VBY+ VR))

However, we get a somewhat different result if we also add a random effect of mother to test for maternal effects:
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modeld4 <- asreml(
fixed = bwt ~ 1 + sex,
random = ~ vm(animal, ainv) + byear + mother,
residual = ~ idv(units),
data = gryphon,

na.action = na.method(x = "omit", y = "omit")

ASReml Version 4.2 05/04/2024 15:28:40

LogLik Sigma2 DF wall
1 -2033.178 1.0 852  15:28:40
2 -1723.734 1.0 852  15:28:40
3 -1396.354 1.0 852  15:28:40
4 -1193.012 1.0 852  15:28:41
5 -1107.946 1.0 852  15:28:41
6 -1095.327 1.0 8562  15:28:41
7 -1094.816 1.0 852  15:28:41
8 -1094.815 1.0 852  15:28:41

summary (model4) $varcomp

component std.error =z.ratio bound %ch

byear 0.8820313 0.2632455 3.350604 P 0
mother 1.1184698 0.2386239 4.687167 P 0
vm(animal, ainv) 2.2985320 0.4962496 4.631806 P 0
units!units 1.6290034 0.3714154 4.385934 P 0
units!R 1.0000000 NA NA F 0

(h2.4 <- vpredict(model4d, h2.bwt ~ V1 / (V1 + V2 + V3 + V4)))

Estimate SE

h2.bwt 0.1487898 0.03861552
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Here partitioning of significant maternal variance has resulted in a further decrease in Vj but also a decrease in
V4. The latter is because maternal effects of the sort we simulated (fixed differences between mothers) will have the
consequence of increasing similarity among maternal siblings. Consequently they can look very much like additive
genetic effects and if present, but unmodelled, represent a type of “common environment effect” that can - and will -
cause upward bias in V4 and so h?. The “common environment” can be conceived as the inextricable sum of the
maternal additive genetic effect (such as maternal loci) and the maternal environment or permanent environment

(such as litter or nest environment created or modified by the mother).

2.0.5. Testing significance of random effects

An important point to note in this tutorial is that while the z.ratio (component/std.error) reported is a good
indicator of likely statistical significance (>1.96?), the standard errors are approximate and are not recommended for

formal hypothesis testing. A better approach is to use likelihood-ratio tests (LRT).

For example, to test the significance of maternal effects we could compare models with and without the inclusion of

maternal identity as a random effect and compare the final log-likelihoods of these models.

model4$loglik

[1] -1094.815

shows that the model including maternal identity has a log-likelihood of -1094.815, and

model3$loglik

[1] -1113.772

shows that the model excluding maternal identity has a log-likelihood of -1113.772.

A test statistic equal to twice the absolute difference in these log-likelihoods is assumed to be distributed as Chi
square with one degree of freedom (one term of difference between the two models). In this case we would conclude
that the maternal effects are highly significant since: 2 x (-1094.8145793 - -1113.7719147) equals 37.9146708, and

the p-value that comes with this is:
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1 - pchisq(2 * (modeld$loglik - model3$loglik), 1)

[1] 7.390738e-10

As P < 0.0001 we would therefore conclude that the additional of maternal identity as a random effect significantly

improves the fit of the model, given an increase in log-likelihood of approximately 19.

2.0.6. Further partitioning the variance

A population can be further fragmented into different groups or categories (such as females and males, juveniles and
adults or treated and untreated). Some scientific questions require further and deeper analysis of the variance. To
avoid multiple model (one for each group), we can directly partition the variance between groups in a unique model.

In addition, by doing so, we can also test if the variance are different between groups.

As example, we decide to take the model4 and partition its additive genetic variance and residual variance by sex. It
is possible to further partition the other random effects but it will complexity the animal model and requires sufficient

sample size.

First, it required to order the dataset by group (here sex).

gryphon <- gryphon[order (gryphon$sex), ]

To partition variances between sex, two distinct functions are require at () for the random level, and dsum () for the

residual level:

model SEX <- asreml(
fixed = bwt ~ 1 + sex,
random = ~ at(sex):vm(animal, ainv) + byear + mother,
residual = ~ dsum(~ units | sex),
data = gryphon,

na.action = na.method(x = "omit", y = "omit")

ASReml Version 4.2 05/04/2024 15:28:41
LogLik Sigma2 DF wall
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1 -1142.164 1.0 8562 15:28:41
2 -1126.308 1.0 852 15:28:41
3 -1111.536 1.0 852 15:28:41
4 -1105.383 1.0 8562 15:28:41
5 -1104.375 1.0 852 15:28:41
6 -1104.364 1.0 852 15:28:41

summary (model_SEX) $varcomp

component std.error =z.ratio bound %ch

byear 0.9001595 0.2690012 3.346303 P 0.0
mother 1.3396184 0.2663118 5.030263 P 0.0
at(sex, '1l'):vm(animal, ainv) 1.4372390 0.6514306 2.206281 P 0.1
at(sex, '2'):vm(animal, ainv) 1.9861434 0.9974302 1.991261 P 0.3
sex_1!R 2.1706213 0.5542492 3.916327 P 0.0
sex_2!R 1.7112948 0.8246188 2.075256 P 0.3

By partitioning the additive genetic variance and the residual variance, the model estimates the V4 and Vj for each
group (sex). Doing so, we can calculate the h? for each group of sex. Here, it’s important to know in which order the

variances are estimated to extract the correct variance in the heritability equation.

(h2.F <- vpredict(model_SEX, h2.bwt ~ V3 / (V1 + V2 + V3 + V5)))

Estimate SE

h2.bwt 0.2457811 0.1070794

(h2.M <- vpredict(model SEX, h2.bwt ~ V4 / (V1 + V2 + V4 + V6)))

Estimate SE

h2.bwt 0.3345244 0.1619218

To test if the variances are different between sexes, we can compare the model partitioned model_SEX and the
previous model without the partitioning model4 in a likelihood ratio test (LRT) with 2 degrees of freedom since

models have two components of variance of difference.
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model SEX$loglik

[1] -1104.364

model4$loglik

[1] -1094.815

1 - pchisq(2 * (model_SEX$loglik - model4d$loglik), 2)

[1] 1

Here, we can see the point estimates of h? seems to differ between sexes (0.25 and 0.33), but their SE overlaps. LRT
give more information and showed that partitioning the variance and the residual between sexes did not improved the

fit of the model and so their variance are not significantly different.

h2.sex <- rbind(h2.F, h2.M)

plot(c(0.95, 1.05) ~ h2.sex[, 1], xlim = c(0, 0.8), ylim = c(0.5, 1.5), , xlab = "", ylab = "", ¢
arrows(y0 = 0.95, xO = h2.sex[1, 1] - h2.sex[1, 2], y1 = 0.95, x1 = h2.sex[1, 1] + h2.sex[1, 2],
arrows(y0 = 1.05, x0 = h2.sex[2, 1] - h2.sex[2, 2], y1 = 1.05, x1 = h2.sex[2, 1] + h2.sex[2, 2],

mtext ("Narrow-sense heritability (xse)", side = 1, las = 1, adj = 0.4, line = 3, cex = 1.6)

axis(2, at = 1, labels = c("birth weight"), las = 3, cex.axis = 1.6)

birth weight
l
O
»

I I I I I
0.0 0.2 0.4 0.6 0.8

Narrow—-sense heritability (xse)

Figure 2.1.: Female and male heritability of birth weight
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2.0.7. Modification of the varaince matrix parameters

Variance represents the deviation of the distribution and it expected to be a positive values. Due to a lack of power, a
structural problem in the dataset or a very low variance, Asreml-r often fixes the variance to a boundary B instead of

a positive value P. When it is happen, it is generally a good idea to examine it.

To examine the boundary effect, we can explore an alternative model where the model allowed a unstructured
parameter for the variance of interest or the entire variance matrix. For this example: we allowed the model to

estimate any values (so allowing possible negative values of estimates) for the random and residual matrix.

First, we create a temporary model model . temp with the exact structure to modify.

model.temp <- asreml(
fixed = bwt ~ 1,
random = ~ vm(animal, ainv) + byear + mother,
residual = ~ idv(units),
data = gryphon,
na.action = na.method(x = "omit", y = "omit"),

start.values = T

)

G.temp <- model.temp$vparameters[(1:3), ]
G.temp$Constraint <- "U"

R.temp <- model.temp$vparameters[-(1:3), ]
R.temp$Constraint [2] <- "U"

The argument start.values=T allowed the model . temp to change its random parameters. We can create the two
different matrices and specify which parameters will be modified. For this example we modified the G and the R
matrix to fit all variance to be U unstructured. it is important to note for the R matrix the line units!R has to be fix

to 1, so it will never change.

The object G.temp and R.temp can be implemented in the following model as new parameters using the argument

R.param and G.param.

model5 <- asreml(
fixed = bwt ~ 1 + sex,

random = ~ vm(animal, ainv) + byear + mother,
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residual = ~ idv(units),
data = gryphon,
na.action = na.method(x = "omit", y = "omit"),

R.param = R.temp, G.param = G.temp

ASReml Version 4.2 05/04/2024 15:28:42

LogLik Sigma2 DF wall
1 -2033.178 1.0 852  15:28:42
2 -1723.734 1.0 852  15:28:42
3 -1396.354 1.0 852  15:28:42
4 -1193.012 1.0 852  15:28:42
5 -1107.946 1.0 852  15:28:42
6 -1095.327 1.0 852  15:28:42
7 -1094.816 1.0 852  15:28:42
8 -1094.815 1.0 852  15:28:42

summary (model5) $varcomp

component std.error =z.ratio bound %ch

byear 0.8820313 0.2632455 3.350604 Uu o0
mother 1.1184698 0.2386239 4.687167 U o0
vm(animal, ainv) 2.2985320 0.4962496 4.631806 Uu o0
units'units 1.6290034 0.3714154 4.385934 Uu o0
units!R 1.0000000 NA NA F 0

Since model4 did not showed boundary, the modelb is very similar.

2.0.8. Covariance between two random effects

Some research questions require to estimate the covariance between two random effects within a univariate model. To
do so, we can use the argument str. As an example, we fit a model which estimate the covariance between the
additive genetic variance and the mother variance. Both variances require to operate on the same level, thus animal

and mother require to be associated to the pedigree information.
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The argument strhas two components: first the equation term with the two random effects ~vm (animal ,Ainv)+vm(mother,
ainv) and second the structural term ~us (2) : id (number). Here within the structural term, we fit a 2x2 unstruc-
tured matrix us (2) which estimated the variance and the covariance between the random effects in the equation
term. To successfully work, the structural term also requires the number of level identified within 1d(). Here a
small tip, if you don’t know the number of level identified within id(), run the model with a random number. The
model will not converge and a error message will appear like this one: Size of direct product (4) does
not conform with total size of included terms (2618). The error message can help you determine

the required level within the str function, as here 2618 divide by 2. In addition, it is necessary the random effects

model . temp2 <- asreml(
fixed = bwt ~ 1,
random = ~ str(~ vm(animal, ainv) + vm(mother, ainv), ~ us(2):1d(1309)) + byear,
residual = ~ idv(units),
data = gryphon,
na.action = na.method(x = "omit", y = "omit"),

start.values = T

G.temp2 <- model.temp2$vparameters[(1:4), ]
G.temp2$Constraint <- "U"
model6 <- asreml(
fixed = bwt ~ 1 + sex,
random = ~ str(~ vm(animal, ainv) + vm(mother, ainv), ~ us(2):1d(1309)) + byear,
residual = ~ idv(units),
data = gryphon,
na.action = na.method(x = "omit", y = "omit"),
# equate.levels = c("animal", "mother"),
, G.param = G.temp2
)

summary (model6) $varcomp

We have successfully produced a code to estimate the covariance between two random effects. However for this
example, the dataset is not sufficient to properly estimate it and the model did not converge but you have the idea of

how to use the function str.
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Additional and final tip: It is happen that Asreml will estimate negative variance if you allow the variance matrix
to be unstructured. A negative variance is counter-intuitive meaning statistically the mean within the random
effect is less similar than expected by chance. However a possible biological reason can be hypothesized such as a
sibling competition within the nest creating a negative among-individual covariance within the nest.Thus to test this

hypotheses,it is required to estimate the covariance between two random effects.
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MCMCglmm

3.0.1. Running the model
First load MCMCglmm:

library(MCMCglmm)

Loading required package: Matrix
Loading required package: coda
Loading required package: ape

The first model we will fit is a simple animal model with no fixed effects, and only an ‘animal’ random effect relating

individuals to their additive genetic values through the pedigree.

First we are going to define the priors. In a way we might want to avoid using priors, because we would like all of the
information in our analysis to come from our data. By default MCMCglmm uses improper priors, but this can cause
inferential and numerical problems. We will specify priors for the animal effect and the residual variance using the

following code:

priorl.1 <- list(

G

1ist(Gl = 1ist(V = 1, nu = 0.002)),

R = list(V = 1, nu = 0.002)
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A prior allowed the model to fit different variance structures. With the unique random effect “animal”, we partitioned
the phenotypic variance into two distinct variances matrices G (additive genetic) and R (residual). This prior
specification is the simplistic one and often used because it was believed to be relatively uninformative, and is
equivalent to an inverse-gamma prior with shape and scale equal to 0.001. In many cases it is relatively uninformative
but when the posterior distribution for the variances has support close to zero it can behave poorly. Parameter
expanded priors (See Chapter 8 of the MCMCglmm CourseNotes, available from CRAN) are gaining in popularity

due to their better behaviour but for the purposes of this tutorial we will stick with the inverse-gamma prior.

We have told MCMCglmm to pay little heed to our prior expectation (V) by specifying a small degree of belief
parameter (nu) of 0.002. Since this is a univariate analysis, the priors are matrix of order 1 and thus nu>0 is the
smallest degree of belief that provides what is known as a ‘proper’ prior, avoiding numerical problems. In fact,
there is a lot of information in the data regarding the marginal distributions of the parameters, and MCMCglmm
will run most of the models that we suggest in these tutorials without priors. However, this is poor practice, but
we will therefore use this simple priors throughout these tutorials. We can now fit an animal model. The model to

decompose variation in birth weight into genetic and residual effects is as follows:

The lower case “animal” is a can be a special word for MCMCglmm. If a pedigree argument is provided then
MCMCglmm will recognize the term animal as the term to use to estimate additive genetic variance. When the
argument pedigree is not provided then the word animal is not different than any other variable. However, instead
of providing a pedigree argument to the call to MCMCglmm function, it is much more flexible to use the ginv
argument to specify the random effect that must be linked to the pedigree (with the inverse relatedness matrix). We

thus first estimate the inverse relatedness matrix using inverseA () then fit the animal model.

Ainv <- inverseA(gryphonped)$Ainv
modell.1l <- MCMCglmm(bwt ~ 1,
random = ~animal, ginv = list(animal = Ainv),

data = gryphon, prior = priorl.1l

MCMC iteration = 0
MCMC iteration = 1000
MCMC iteration = 2000
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After typing this code, MCMCglmm will run, taking about 20 seconds on a modern desktop computer. The progress
of the run will be printed to the screen. Also, note the warning message will be printed at the end of the run. This is
natural too. In order for the MCMC algorithm to work, MCMCglmm must keep track of effects associated with
unmeasured individuals appearing in the pedigree. This will not affect the answers, but when many unmeasured
individuals exist, it can hinder the ability of the algorithm to explore the parameter space (more on this, and a

solution, later). Lets have a look at the MCMCglmm outputs. First we will evaluate how confident we can be that

iteration

iteration

iteration

iteration

iteration

iteration

iteration

iteration

iteration

iteration

iteration

MCMCglmm found good answers. By entering

plot(modell.1$Sol)
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Trace of (Intercept) Density of (Intercept)
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Figure 3.1.: The posterior distribution of the fixed effect (the intercept, or mean) in model 1.1

in the console, we get Figure 2.2. The plot on the left shows a time series of the values of 1000 samples of the
posterior distribution of the the model intercept (mean birth weight). The plot on the right shows the same data
as a distribution. Complicated statistical methods for estimating population means are of course of little interest;
rather, we are examining these outputs to check that MCMCglmm’s algorithms worked well for our data and for this
model. The important point here is that a consistent amount of variation around a largely unchanging mean value
of the intercept was obtained (which give this fluctuating trace concentrated around the mean), and the posterior
distribution of the intercept appears to be valid. More rigorous means of evaluation the independence of the samples
in the posterior distribution (evaluating autocorrelation) are discussed in the MCMCglmm CourseNotes, available
from CRAN. Note that your output for model 1.1 may not be identical to this due to Monte Carlo (random number)

error. So every times, you run the model, you will get similar but slightly different results.

The posterior distributions of the the variance components are generally of more interest to animal model users. We

can view plots of the posterior distribution for the variance components for model 1.1 by

plot(modell.1$VCV)
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Figure 3.2.: The posterior distributions of the variance components of model 1.1, based on an analysis with the
default values for nitt, burnin, and thin in MCMCglmm

which generates Figure 2.3. Here we see distributions of the estimates of the additive genetic (animal) and residual
(units) effects. These samples contain some autocorrelation, i.e., trends are apparent in the left-hand plot. We can

deal with this easily.

3.0.2. Change in iteration and sampling

We will simply re-run the model for a longer number of iterations, and sample the chain less frequently. So far we
have been running MCMCglmm with its default values. These defaults are a total run length of 13000 iterations, the
first 3000 of which are discarded as a ‘burn-in’ period to make sure that the converges to the part of the parameter
space where the maximum likelihood exists. The remaining 10000 iterations are sampled (estimates retained) every
10 iterations (the thinning interval). Because the values in the left-hand plots in figure 2.2 to appear to have different
values at the beginning of the run, we might suspect that a longer burn-in period might be required. We can reduce
the autocorrelation by lengthening the rest of the run and sampling the chain less frequently. The following code
runs the same model 1.1, but is likely to produce better samples of the posterior distributions. This model should

take about two minutes to analyze.

modell.1l <- MCMCglmm(bwt ~ 1,
random = ~animal, ginv = list(animal = Ainv),

data = gryphon, nitt = 65000, thin = 50, burnin = 15000,
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prior = priorl.1, verbose = FALSE

Notes that we have now included the argument verbose=FALSE in the MCMCglmm call. We will continue this
throughout the tutorial so that more complete screen outputs can be included in this document without using too
much space.Note that the autocorrelation is much reduced. A more compact way to evaluate the validity of the

posterior distributions is to calculate autocorrelation among samples, as follows:

autocorr.diag(modell.1$VCV)

animal units
Lag O 1.00000000 1.00000000
Lag 50 0.22557278 0.18432336
Lag 250 0.04529195 0.05833619
Lag 500 0.02911877 0.02162644
Lag 2500 0.04993585 0.04805583

We will consider these levels of autocorrelation acceptable, at least for the purposes of this tutorial. Ideally, all
samples of the posterior distribution should be independent, and the autocorrelation for all lag values greater than
zero should be near zero. However, in practice this will not strictly be achievable for all analytic scenarios. Certainly
the levels of autocorrelation observed here should not be tolerated in any formal analysis. Note that the validity
of posterior distributions of any analysis should always be checked; however, for brevity we will not continue to
be so consistently diligent throughout the rest of these tutorials. We can now proceed with confidence to recover
some more information from these samples. We can obtain estimates of the additive genetic and residual variance by

calculating the modes of the posterior distributions:

posterior.mode(modell.1$VCV)

animal units

3.624195 3.976344

We can obtain the Bayesian equivalent of confidence intervals by calculating the the values of the estimates that

bound 95% (or any other proportion) of the posterior distributions:

28



HPDinterval (modell.1$VCV)

lower upper
animal 2.076880 4.604824
units 2.798573 4.881532
attr(,"Probability")

[1] 0.95

3.0.3. Change priors parameters

We specified weak priors in this analyses. Now we will check whether or not proper priors would have influenced the
results that we obtained. The simplest way to do this is to re-run the model with different priors. In the previous
model we specified a prior where the size of genetic and residual variance were similar. Here we construct priors
with a larger degree of belief parameter (nu), and we will specify that a large proportion (95%) of the variation is

under genetic control (V).Thus, the residual variance contains 05% of the phenotypic variance.

p.var <- var(gryphon$bwt, na.rm = TRUE)
priorl.1.2 <- list(

G

list (Gl = list(V = matrix(p.var * 0.95), nu = 1)),

R

list(V = matrix(p.var * 0.05), nu = 1)

modell.1.2 <- MCMCglmm(bwt ~ 1,
random = ~animal, ginv = list(animal = Ainv),
data = gryphon, prior = priorl.1.2, nitt = 65000, thin = 50,
burnin = 15000, verbose = FALSE

)

posterior.mode(modell.1$VCV)

animal units

3.624195 3.976344
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posterior.mode(modell.1.28VCV)

animal units

3.411235 3.869403

and we can therefore conclude that the difference in the priors has little effect on the outcome of the analysis. This is

typical for an analysis where lots of data are available relative to the complexity of the model, but is often not the

case. In all cases, it is important to check the effect of priors on conclusions drawn from a model. In addition, you

can also specify the prior with previous knowledge or expectation for the variance.

3.0.4. Estimating heritability

A useful property of Bayesian posterior distributions is that we can apply almost any transformation to these

distributions and they will remain valid. This applies to the calculation of heritability. We can obtain an estimate of

the heritability by applying the basic formula h? =V, /Vp to each sample of the posterior distribution:

posterior.heritabilityl.1l <- modell.1$VCV[, "animal'] /

(modell.1$VCV[, "animal"] + modell.1$VCV[, "units"])

posterior.mode(posterior.heritabilityl.1)

varl

0.466366

HPDinterval (posterior.heritabilityl.1, 0.95)

lower upper
varl 0.3135642 0.6155036
attr(,"Probability")

[1] 0.95

Generate a plot of the posterior distribution of this heritability estimate:
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plot (posterior.heritabilityl.1)
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Figure 3.3.: The posterior distributions the heritability from model 1.1

3.0.5. Adding fixed effects

To add effects to a univariate model, we simply modify the fixed effect part of the model specification:

modell.2 <- MCMCglmm(bwt

random = ~animal, ginv

data = gryphon, prior =

nitt

)

65000, thin = 50

summary (modell.?2)

Iterations = 15001:64951
Thinning interval = 50
Sample size = 1000

DIC: 3717.49

G-structure: ~animal

~ sex,
= list(animal = Ainv),
priorl.1,

, burnin = 15000, verbose = FALSE

31



Chapter 3. MCMCglmm

post.mean 1-95% CI u-95), CI eff.samp
animal 3.068 2.13 4.13 691.8

R-structure: ~units

post.mean 1-95% CI u-95J% CI eff.samp

units 2.959 2.175 3.793 794.6

Location effects: bwt ~ sex

post.mean 1-95% CI u-95% CI eff.samp pMCMC

(Intercept) 6.062 5.743 6.416 881.5 <0.001 **x
sex2 2.209 1.900 2.528  1000.0 <0.001 *x*x*
Signif. codes: O 'xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

We can assess the significance of sex as a fixed effect by examining its posterior distribution. Important notes here,

it is important to know how the model names their fixed effect level to call them properly.

posterior.mode(modell.2$Sol[, "sex2"])

varl

2.260058

HPDinterval (modell.2$Sol[, "sex2"], 0.95)

lower upper
varl 1.89983 2.527696
attr(,"Probability")

[1] 0.95

The posterior distribution of the sex2 term does not overlap zero. Thus, we can infer that sex has an effect on birth
weight (presence of a sexual dimorphism) in this model and is a useful addition to the model, for most purposes. It is

also worth noting that the variance components have changed slightly:
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posterior.mode(modell.2$VCV)

animal units

3.099095 3.134758

In fact since sex effects were previously contributing to the residual variance of the model our estimate of V', (denoted
“units’ in the output) is now slightly lower than before. This has an important consequence for estimating heritability
since if we calculate Vp as V4 + Vj then as we include fixed effects we will soak up more residual variance driving
Vp . Assuming that V, is more or less unaffected by the fixed effects fitted then as V) goes down we expect our

estimate of h2 will go up.

posterior.heritabilityl.2 <- modell.2$VCV[, "animal'] /
(modell.2$VCV[, "animal"] + modell.2$VCV[, "units"])

posterior.mode(posterior.heritabilityl.2)

varil

0.5140724

HPDinterval (posterior.heritabilityl.2, 0.95)

lower upper
varl 0.350474 0.6389083
attr(,"Probability")

[1] 0.95

Here h? has increased slightly from 0.4829 to 0.5079 (again, your values may differ slightly due to Monte Carlo
error). Which is the better estimate? It depends on what your question is. The first is an estimate of the proportion of
variance in birth weight explained by additive effects, the latter is an estimate of the proportion of variance in birth
weight after conditioning on sex that is explained by additive effects. An important piece of advice, each researcher
should be consistent in how they name their estimates and always correctly describe which estimates they are using

conditional or not (to avoid any confusion).
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3.0.6. Adding random effects

This is done by simply modifying the model statement in the same way, but requires addition of a prior for the new

random effect. For instance, we can fit an effect of birth year:

prior1l.3 <- list(

G = 1ist(G1l = 1list(V = 1, nu = 0.002), G2 = 1list(V = 1, nu = 0.002)),

R = 1list(V = 1, nu = 0.002)

modell.3 <- MCMCglmm(bwt ~ sex,
random = ~ animal + byear, ginv = list(animal = Ainv),

data = gryphon,

nitt 65000, thin = 50, burnin = 15000,

prior = priorl.3, verbose = FALSE

posterior.mode(modell.33VCV)

animal byear units

2.5316830 0.9198862 2.2776450

Here the variance in birth weight explained by birth year is 0.92. Note that although V4 has changed somewhat,
most of what is now partitioned as a birth year effect was previously partitioned as V5, . Thus what we have really
done here is to partition environmental effects into those arising from year to year differences versus everything
else, and we do not really expect much change in h? (since now h? =V, / (V4 + Vgy + Vg)). However, we get a

somewhat different result if we also add a random effect of mother to test for maternal effects:

priorl.4 <- list(

G = list(
Gl = 1ist(V = 1, nu = 0.002),
G2 = 1list(V =1, nu = 0.002),
G3 = 1list(V = 1, nu = 0.002)
) s
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R = list(V = 1, nu = 0.002)

modell.4 <- MCMCglmm(bwt ~ sex,
random = ~ animal + byear + mother,
ginv = list(animal = Ainv), data = gryphon,
nitt = 65000, thin = 50, burnin = 15000,

prior = priorl.4, verbose = FALSE

posterior.mode (modell.4$VCV)

animal byear mother units

2.206574 0.813384 1.174485 1.698967

Here partitioning of significant maternal variance has resulted in a further decrease in V' but also a decrease in
V4. The latter is because maternal effects of the sort we simulated (fixed differences between mothers) will have
the consequence of increasing similarity among maternal siblings. Consequently they can look very much like an
additive genetic effects and if present, but unmodelled, represent a type of ‘common environment effect’ that can -
and will- cause upward bias in V, and so h?. Let’s compare the estimates of heritability from each of models 1.2,

1.3 and 1.4:

posterior.heritabilityl.3 <- modell.3$VCV[, "animal"] /

(modell.3$VCV[, "animal"] + modell.3$VCV[, "byear"] + modell.3$VCV[, "units"])
posterior.heritabilityl.4 <- modell.4$VCV[, "animal"] /

(modell.4$VCV[, "animal"] + modell.4$VCV[, "byear"] + modell.4$VCV[, "mother"] + modell.4$VCV[,

posterior.mode(posterior.heritabilityl.2)

varl

0.5140724

posterior.mode(posterior.heritabilityl.3)

varl

0.4488873

35



Chapter 3. MCMCglmm

posterior.mode(posterior.heritabilityl.4)

varl

0.3591046

3.0.7. Testing significance of variance components

While testing the significance of fixed effects by evaluating whether or not their posterior distributions overlap zero
was simple and valid, this approach does not work for variance components. Variance components are bounded to be
positive (given a proper prior), and thus even when a random effect is not meaningful, its posterior distribution will
never overlap zero. Model comparisons can be performed using the deviance information criterion (DIC), although it
should be noted that the properties of DIC are not well understood and that the DIC may be focused at the wrong level
for most people’s intended level of inference - particularly with non-Gaussian responses. The implementation of DIC
in MCMCglmm is further described in the reference manual. DIC values are calculated by MCMCglmm by default.
Briefly, DIC like other information criteria balance model fit and model complexity simultaneously, and small values

of DIC are preferred. We can compare models 1.4 and 1.3, i.e., models with and without the mother term:

modell.3$DIC

[1] 3550.419

modell.4$DIC

[1] 3326.221

model 1.4 has a much lower DIC value. Since the maternal effect term is the only difference between the models,
we can consider the inclusion of this term statistically justifiable. We should note however that DIC has a large

sampling variance and should probably only be calculated based on much longer MCMC runs.

3.0.8. Further partitioning variance

A population can be further fragmented into different groups or categories (such as females and males, juveniles and

adults or treated and untreated). Some scientific questions require further and deeper analysis of the variance. To
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avoid multiple model (one for each group), we can directly partition the variance between groups in a unique model.

In addition, by doing so, we can also test if the variance are different between groups.

As example, we can partition the additive genetic variance and residual variance by sex. It is impossible to further

partition the other variances but complexity an animal model requires sufficient sample size.

priorl.4.SEX <- list(
G

list (Gl = list(V = diag(2), nu = 1.002), G2 = 1list(V = 1, nu = 0.002), G3 = list(V = 1, nu

R = list(V = diag(2), nu = 1.002)

modell.4.SEX <- MCMCglmm(bwt ~ sex,

random = ~ idh(sex):animal + byear + mother,
rcov = ~ idh(sex):units,
ginv = list(animal = Ainv), data = gryphon, nitt = 65000, thin = 50, burnin = 15000,

prior = priorl.4.8EX, verbose = FALSE

posterior.mode (modell.4.SEX$VCV)

sexl.animal sex2.animal byear mother sexl.units sex2.units

1.2062736 2.0902893 0.8733524 1.2895559 2.2515435 1.8513554

posterior.heritabilityl.4.FEM <- modell.4.SEX$VCV[, "sexl.animal"] /
(modell.4.SEX$VCV[, "sexl.animal"] + modell.4.SEX$VCV[, "byear"] +
modell.4.SEX$VCV[, "mother"] + modell.4.SEX$VCV[, "sexl.units"])
posterior.heritabilityl.4.MAL <- modell.4.SEX$VCV[, "sex2.animal"] /
(modell.4.SEX$VCV[, "sex2.animal"] + modell.4.SEX$VCV[, "byear"] +

modell.4.SEX$VCV[, "mother"] + modell.4.SEX$VCV[, "sex2.units"])

posterior.mode(posterior.heritabilityl.4.FEM)

varl

0.220252
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HPDinterval (posterior.heritabilityl.4.FEM, 0.95)

lower upper
varl 0.03915338 0.4400476
attr(,"Probability")

[1] 0.95

posterior.mode(posterior.heritabilityl.4.MAL)

varl

0.3716178

HPDinterval (posterior.heritabilityl.4.MAL, 0.95)

lower upper
varl 0.04439791 0.5943772
attr(,"Probability")

[1] 0.95

Here, we can estimate the heritability for each sex. Both doesn’t overlap with zero, so we can conclude both
sexes have significant heritability. However due to their overlaps CIs, we can not conclude the heritability is not
significantly different between sexes. An important quote to remember is “A difference in significance is not a

significant difference”

h2.sex <- rbind(
cbind(posterior.mode(posterior.heritabilityl.4.FEM), HPDinterval(posterior.heritabilityl.4.FEM,

cbind(posterior.mode(posterior.heritabilityl.4.MAL), HPDinterval(posterior.heritabilityl.4.MAL,

)

plot(c(0.95, 1.05) ~ h2.sex[, 1], xlim = c(0, 0.8), ylim = c(0.5, 1.5), , xlab = "", ylab = "", c
arrows(y0 = 0.95, x0O = h2.sex[1, 2], y1 = 0.95, x1 = h2.sex[1, 3], code = 3, angle = 90, length =
arrows(y0 = 1.05, x0 = h2.sex[2, 2], y1l = 1.05, x1 = h2.sex[2, 3], code = 3, angle = 90, length =

mtext ("Narrow-sense heritability (xCI)", side = 1, las = 1, adj = 0.4, line = 3, cex = 1.6)

axis(2, at = 1, labels = c("birth weight"), las = 3, cex.axis = 1.6)
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Figure 3.4.: Female and male heritability of birth weight

3.0.9. Modification of model parameter

Unfortunately (to our knowledge), it is not possible to alter the variance matricesand refit them within the model.

3.0.10. Covariance between two random effects

Some research questions require to estimate the covariance between two random effects within a univariate model. To
do so, we can use the argument str. A similar argument or linking.function mm can be used but it will forced the
variance of animal and mother to be equal and the covariance to 1. As an example, we fit a model which estimate
the covariance between the additive genetic variance and the mother variance. Both variances require to operate on
the same level, thus animal and mother require to be associated to the pedigree information.The ginverse list name

has to correspond to the first term in the argument or linking.function

priorl.5 <- list(

G

list(Gl = 1list(V = diag(2), nu = 0.002)),

R = list(V = 1, nu = 0.002)

modell.5 <- MCMCglmm(bwt ~ sex,
random = ~ str(animal + mother), ginv = list(animal = Ainv),

rcov = ~ idh(1) :units,
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Chapter 3. MCMCglmm

data = gryphon, nitt = 65000, thin = 50, burnin = 15000,

prior = priorl.5, verbose = FALSE

posterior.mode(modell.5$VCV)
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brms

4.0.1. Running the model
First we need to load the brms library:
library(brms)
Loading required package: Rcpp
Loading 'brms' package (version 2.21.0). Useful instructions
can be found by typing help('brms'). A more detailed introduction
to the package is available through vignette('brms_overview').
Attaching package: 'brms'
The following object is masked from 'package:stats':
ar
To be able to fit an animal model, brms needs the relativeness (relationship) matrix of the pedigree and not its

inverse (as in other softwares). This can be estimated using the nadiv package created by Pr. Matthew Wolak

(https://cran.r-project.org/web/packages/nadiv/index.html).
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Amat <- as.matrix(nadiv::makeA(gryphonped))

We are now ready to specify our first model: The structure of a bmrs model is similar to 1me4, thus the random
effect is added to the model with the term (1 | gr(animal, cov = Amat) which associate the id animal to the
matrix of relativeness. In addition to the synthase of 1me4, we includes other features or parameters within the
models such as chain which represent the number of Markov chains (defaults to 4), core which represents the
number of cores to use when executing the chains in parallel and iter which represents the number of total iterations
per chain. For more parameters such as thin or warmup/burnin, you can read the Cran R page of the package

(https://cran.r-project.org/web/packages/brms/brms.pdf)

bmrs is a Bayesian Multilevel Models using Stan, doing so we can apply a prior to the model to better shape the
distribution of the different variances estimated by the model. Given that bmrs fit the model using a Bayesian
approach via the software stan, we need to specify priors for the model. Default priors in brms work relatively well,
however we strongly suggest to carefully select an adequate prior for your analysis. In this tutorial we will use the

default priors. To get the prior used by default, we can use the get_prior () function.

brms_mi1.1 <- brm(
bwt ~ 1 + (1 | gr(animal, cov = Amat)),
data = gryphon,

data2 = list(Amat = Amat),

family = gaussian(),

chains = 1, cores = 1, iter = 100

save(brms ml1.1, file = "data/brms ml 1.rda")

The result of the long model calculation is save in a spare file brms_m1_1.rda". To help readers, we can directly
reloading it. Two distinct plot can be produce to produce some diagnostics graphs mcmc_plot.Note, that sigma

represents the residual standard deviation.

Next,we examine (or directly using the model) the variance estimate and their distributions (via summary or plot).

load("data/brms m1_1.rda")

plot (brms_ml.1)
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mcmc_plot(brms_ml.1, type = "acf")

b_Intercept sd_animal__ Intercey sigma
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15 20 0 5 10 15 20 0 5 10 15 20
Lag

Autocorrelation

summary (brms_m1.1)

Warning: Parts of the model have not converged (some Rhats are > 1.05). Be
careful when analysing the results! We recommend running more iterations and/or

setting stronger priors.

Family: gaussian
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Links: mu = identity; sigma = identity
Formula: bwt ~ 1 + (1 | gr(animal, cov = Amat))
Data: gryphon (Number of observations: 854)
Draws: 1 chains, each with iter = 100; warmup = 50; thin = 1;

total post-warmup draws = 50

Multilevel Hyperparameters:
~animal (Number of levels: 1084)
Estimate Est.Error 1-95J CI u-95% CI Rhat Bulk_ESS Tail_ ESS

sd(Intercept) 1.75 0.17 1.49 2.06 1.55 2 20

Regression Coefficients:
Estimate Est.Error 1-95j% CI u-95J CI Rhat Bulk_ESS Tail_ ESS

Intercept 7.57 0.13 7.30 7.79 1.00 27 63

Further Distributional Parameters:
Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk_ESS Tail ESS

sigma 2.04 0.12 1.83 2.25 1.68 2 20

Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
and Tail_ESS are effective sample size measures, and Rhat is the potential

scale reduction factor on split chains (at convergence, Rhat = 1).

The plot of variance showed that the different variances have an normal distribution, the autocorrelation plot or
‘acf” show that the autocorrelation is close to 0. The summary exposes the mean (Estimate) of each variance or
fixed effect (here just the intercept) associated to their posterior distribution with standard deviation (Est.Error) and
two-sided 95% Credible intervals. Rhat provides information on the estimate convergence. If it’s greater than 1, the
chains have not yet converged and it will be require to run more iterations and/or set stronger priors. ESS represents
the Effective sample values as the number of independent samples from the posterior distribution. However, for the

purpose of this guide, the Rhat values are acceptable.

It is also possible to calculate the heritability using the function ‘as.mcmc’
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v_animal <- (VarCorr(brms_ml.1, summary = FALSE)$animal$sd) "2
v_r <- (VarCorr(brms_ml.1, summary = FALSE)$residual$sd) "2
h.bwt.1 <- as.mcmc(v_animal / (v_animal + v_r))

summary (h.bwt.1)

Iterations = 1:50
Thinning interval = 1
Number of chains =1

Sample size per chain = 50

1. Empirical mean and standard deviation for each variable,

plus standard error of the mean:

Mean SD Naive SE Time-series SE

0.42526 0.07162 0.01013 0.02854

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
0.3027 0.3687 0.4408 0.4702 0.5361

plot(h.bwt.1)

Trace of Intercept Density of Intercept

0.30 0.40 0.50
I

I I I I I I
0 10 30 50

Iterations N =50 Bandwidth =0.03472
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# or
Var.table <- as_draws_df (brms ml.1)
Var.table$h.bwt.1l <- as.mcmc((Var.table$sd_animal__Intercept) 2 / ((Var.table$sd_animal_ _Intercep

summary (Var.table$h.bwt.1)

Iterations = 1:50
Thinning interval = 1
Number of chains = 1

Sample size per chain = 50

1. Empirical mean and standard deviation for each variable,

plus standard error of the mean:

Mean SD Naive SE Time-series SE

0.42526 0.07162 0.01013 0.02854

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
0.3027 0.3687 0.4408 0.4702 0.5361

plot(Var.table$h.bwt.1)

Trace of varl Density of varl

0.30 0.40 0.50
I

I I I I I I
0 10 30 50

Iterations N =50 Bandwidth =0.03472
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4.0.2. Adding fixed effects

To add effects to a univariate model, we simply modify the priors and the fixed effect portion of the model specifica-

tion:

brms mi1.2 <- brm(
bwt ~ 1 + sex + (1 | gr(animal, cov = Amat)),
data = gryphon,

data2 = list(Amat = Amat),

family = gaussian(),

chains = 2, cores = 2, iter = 1000

save(brms_ml1.2, file = "data/brms_ml_2.rda")

To save time, the results of the calculation is stored in the spare file brms_m1_2.rda". We can assess the significance

of sex as a fixed effect by examining its posterior distribution.

load("data/brms ml 2.rda")

summary (brms_m1.2)

Family: gaussian
Links: mu = identity; sigma = identity
Formula: bwt ~ 1 + sex + (1 | gr(animal, cov = Amat))
Data: gryphon (Number of observations: 854)
Draws: 2 chains, each with iter = 1000; warmup = 500; thin = 1;

total post-warmup draws = 1000

Multilevel Hyperparameters:
~animal (Number of levels: 1084)
Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk_ESS Tail_ ESS

sd(Intercept) 1.67 0.14 1.39 1.97 1.02 93 120

Regression Coefficients:

Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk_ESS Tail ESS
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Intercept 6.07 0.18 5.75 6.43 1.00 616 451

sex2 2.20 0.17 1.87 2.52 1.00 749 502

Further Distributional Parameters:
Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk ESS Tail ESS

sigma 1.79 0.11 1.56 1.99 1.03 96 119

Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS

and Tail_ESS are effective sample size measures, and Rhat is the potential

scale reduction factor on split chains (at convergence, Rhat = 1).

plot(brms_ml.2)

b_Intercept b_Intercept
5.6 6.0 6.4 0 100 200 300 400 500
b_sex2 b sex2

i s e

0 100 200 300 400 5oo Chair

sd_animal__ Intercept sd animal Intercep‘ 2

EBL_A LB Am g ey

0 100 200 300 400 500

sigma sigma

EBL—*-.—— z QEI TR il i “"u""'tn ralh e

0 100 200 300 400 500

mcme_plot(brms_ml.2, type = "pairs")
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b_Intercept

17022250 13151719

b _sex2

5.76.06.26.50 1.752.002.252.50 13151719

2.00
1.75
1.50
1.25

5.76.06.26.50 1.72.0@.22.50 1.251.501.752.00 16 1.8 2.0

sd_animal__Intercepty

sigma

=N

}

5.76.06.25.50 1.72.02.22.50 1.251.501.752.00 16 1.8 2.0

summary (brms_m1.2)$fixed

Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
Intercept 6.071245 0.1774787 5.748606 6.428933 1.001657 615.7726 451.3620
sex2 2.195386 0.1667400 1.872125 2.518738 1.002985 749.4558 502.4438

summary (brms_m1.2)$random

$animal
Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

sd(Intercept) 1.667668 0.1442392 1.393627 1.967308 1.023006 93.37621 119.8231

The posterior distribution of the sex2 term does not overlap zero. Thus, we can infer that sex has an effect on birth
weight (presence of a sexual dimorphism) in this model and is a useful addition to the model, for most purposes. It is

also worth noting that the variance components have changed slightly:
summary (brms_m1.2)$random
$animal

Estimate Est.Error 1-95% CI u-95J CI Rhat Bulk_ESS Tail_ ESS

sd(Intercept) 1.667668 0.1442392 1.393627 1.967308 1.023006 93.37621 119.8231
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In fact since sex effects were previously contributing to the residual variance of the model our estimate of V5, (denoted
“units’ in the output) is now slightly lower than before. This has an important consequence for estimating heritability
since if we calculate Vp as V4 + V5 then as we include fixed effects we will soak up more residual variance driving
Vp . Assuming that V4 is more or less unaffected by the fixed effects fitted then as V), goes down we expect our

estimate of h? will go up.

v_animal <- (VarCorr(brms_ml.2, summary = FALSE)$animal$sd) "2
v_r <- (VarCorr(brms_ml.2, summary = FALSE)$residual$sd) "2

h.bwt.2 <- as.mcmc(v_animal / (v_animal + v_r))

summary (h.bwt.2)

Iterations = 1:1000
Thinning interval = 1
Number of chains =1

Sample size per chain = 1000

1. Empirical mean and standard deviation for each variable,

plus standard error of the mean:

Mean SD Naive SE Time-series SE

0.464637 0.068645 0.002171 0.007561

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
0.3375 0.4183 0.4620 0.5089 0.6030

summary (h.bwt.1)

Iterations = 1:50

Thinning interval = 1
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Number of chains =1

Sample size per chain = 50

1. Empirical mean and standard deviation for each variable,

plus standard error of the mean:

Mean SD Naive SE Time-series SE

0.42526 0.07162 0.01013 0.02854

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
0.3027 0.3687 0.4408 0.4702 0.5361

Here h? has increased slightly from 0.5010 to 0.4192 (again, your values may differ slightly due to Monte Carlo
error). Which is the better estimate? It depends on what your question is. The first is an estimate of the proportion of
variance in birth weight explained by additive effects, the latter is an estimate of the proportion of variance in birth
weight after conditioning on sex that is explained by additive effects. An important piece of advice, each researcher
should be consistent in how they name their estimates and always correctly describe which estimates they are using

conditional or not (to avoid any confusion).

4.0.3. Adding random effects

This is done by simply modifying the model statement in the same way, but requires addition of a prior for the new

random effect. For instance, we can fit an effect of birth year:

brms_mi1.3 <- brm(
bwt ~ 1 + sex + (1 | gr(animal, cov = Amat)) + (1 | byear) + (1 | mother),
data = gryphon,

data2 = list(Amat = Amat),

family = gaussian(),

chains = 2, cores = 2, iter = 1000
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save(brms_ml1.3, file = "data/brms_ml_3.rda")

To save time, the results of the calculation is stored in the spare file brms_m1_3.rda". We can assess the significance

of sex as a fixed effect by examining its posterior distribution.

load("data/brms _ml_3.rda")

plot(brms_m1.3, ask = FALSE, N = 3)

Warning: Argument 'N' is deprecated. Please use argument 'nvariables' instead.
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summary (brms_m1.3) $random

Warning: Parts of the model have not converged (some Rhats are > 1.05). Be
careful when analysing the results! We recommend running more iterations and/or

setting stronger priors.

$animal
Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

sd(Intercept) 1.462757 0.1673822 1.153225 1.768881 1.079817 32.11486 156.8095

$byear
Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk_ESS Tail_ ESS

sd(Intercept) 0.9767418 0.140156 0.7415211 1.306467 1.007016 469.316 407.5334

$mother
Estimate Est.Error 1-95J CI u-95% CI Rhat Bulk_ESS Tail_ ESS
sd(Intercept) 1.086973 0.1107873 0.8507715 1.296683 1.001921 228.2474 380.5216

Here partitioning of significant birth year and maternal variance has resulted in a further decrease in V5 but also a
decrease in V4. The latter is because maternal effects of the sort we simulated (fixed differences between mothers)

will have the consequence of increasing similarity among maternal siblings. Consequently they can look very much
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like an additive genetic effects and if present, but unmodelled, represent a type of ‘common environment effect’ that
can - and will- cause upward bias in V4 and so h2. Let’s compare the estimates of heritability from each of models

1.2, 1.3 and 1.4:

v_animal <- (VarCorr(brms_ml.3, summary = FALSE)$animal$sd) "2
v_byear <- (VarCorr(brms_ml.3, summary = FALSE)S$byear$sd) "2
v_mother <- (VarCorr(brms_ml.3, summary = FALSE)$mother$sd) "2

v_r <- (VarCorr(brms_ml.3, summary = FALSE)$residual$sd) 2

h.bwt.3 <- as.mcmc(v_animal / (v_animal + v_byear + v_mother + v_r))

summary (h.bwt.3)

Iterations = 1:1000
Thinning interval = 1
Number of chains =1

Sample size per chain = 1000

1. Empirical mean and standard deviation for each variable,

plus standard error of the mean:

Mean SD Naive SE Time-series SE

0.356562 0.073890 0.002337 0.010196

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
0.2208 0.3042 0.3517 0.4111 0.5045

summary (h.bwt.2)

Iterations = 1:1000
Thinning interval =1

Number of chains = 1
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Sample size per chain = 1000

1. Empirical mean and standard deviation for each variable,

plus standard error of the mean:

Mean SD Naive SE Time-series SE

0.464637 0.068645 0.002171

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
0.3375 0.4183 0.4620 0.5089 0.6030

summary (h.bwt.1)

Iterations = 1:50
Thinning interval = 1
Number of chains = 1

Sample size per chain = 50

0.007561

1. Empirical mean and standard deviation for each variable,

plus standard error of the mean:

Mean SD Naive SE Time-series SE

0.42526 0.07162 0.01013

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
0.3027 0.3687 0.4408 0.4702 0.5361

0.02854
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# or
Var.table <- as_draws_df (brms ml.3)
Var.table$h.bwt.3 <- as.mcmc((Var.table$sd_animal__Intercept) 2 / ((Var.table$sd_animal_ _Intercep

summary (Var.table$h.bwt.3)

Iterations = 1:1000
Thinning interval = 1
Number of chains = 1

Sample size per chain = 1000

1. Empirical mean and standard deviation for each variable,

plus standard error of the mean:

Mean SD Naive SE Time-series SE

0.356562 0.073890 0.002337 0.010196

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
0.2208 0.3042 0.3517 0.4111 0.5045

plot(Var.table$h.bwt.3)
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4.0.4. Testing significance of variance components

While testing the significance of fixed effects by evaluating whether or not their posterior distributions overlap zero
was simple and valid, this approach does not work for variance components. Variance components are bounded to be
positive (given a proper prior), and thus even when a random effect is not meaningful, its posterior distribution will

never overlap ZEro.

Model comparisons can be performed using the function 1oo_compare using waic or weighted AIC.

brms m1.3 <- add_criterion(brms m1.3, "loo")

Warning: Found 364 observations with a pareto_k > 0.67 in model 'brms_ml1.3'. We
recommend to run more iterations to get at least about 2200 posterior draws to

improve LOO-CV approximation accuracy.

brms mi1.1 <- add_criterion(brms _mi.1, "loo")

Warning: Found 476 observations with a pareto_k > 0.41 in model 'brms_ml.1'. We
recommend to run more iterations to get at least about 2200 posterior draws to

improve LOO-CV approximation accuracy.

loo_compare(brms_ml1.3, brms_ml.l, criterion = "loo")

elpd_diff se_diff
brms_m1.3 0.0 0.0

brms_mi1.1 -208.3 15.7

4.0.5. Further partitioning of the variance

Depending of the research question and the presence of different group within the dataset, brms allowed to partition
the variance at different groups. Two distinct approch can be done to partition the different random effect: using an
extra argument by=sex or by adding (0+sex|) before the |. Notes, here we used | | which not estimate a possible

covariance between groups (female and male) for the random effect.
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brms_mi.4 <- brm(
# bwt ~ 1 + sex + (1 | gr(animal, cov = Amat, by = sex))+ (1 | gr(byear, by = sex)) + (1 | gr
bwt ~ 1 + sex + (0 + sex || gr(animal, cov = Amat)) + (0 + sex || byear) + (0 + sex || mother),
data = gryphon,
data2 = list(Amat = Amat),
family = gaussian(),

chains = 2, cores = 2, iter = 1000

save(brms_ml1.4, file = "data/brms_ml_4.rda")

To save time, the results of the calculation is stored in the spare file brms_m1_4.rda".

load("data/brms_ml_4.rda")

summary (brms_m1.4)
y =

Warning: Parts of the model have not converged (some Rhats are > 1.05). Be
careful when analysing the results! We recommend running more iterations and/or

setting stronger priors.

Family: gaussian
Links: mu = identity; sigma = identity

Formula: bwt ~ 1 + sex + (0 + sex || gr(animal, cov = Amat)) + (0 + sex || byear) + (0 + sex || m
Data: gryphon (Number of observations: 854)
Draws: 2 chains, each with iter = 1000; warmup = 500; thin = 1;

total post-warmup draws = 1000

Multilevel Hyperparameters:
~animal (Number of levels: 1084)

Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk_ESS Tail_ ESS
sd(sex1) 1.32 0.24 0.81 1.75 1.02 40 124
sd(sex2) 0.91 0.38 0.12 1.53 1.07 22 70

~byear (Number of levels: 34)
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Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
sd(sex1) 0.91 0.17 0.62 1.26 1.00 632 604
sd(sex2) 1.08 0.20 0.76 1.50 1.00 429 614

~mother (Number of levels: 429)

Estimate Est.Error 1-95J% CI u-95% CI Rhat Bulk_ESS Tail ESS
sd(sex1) 0.91 0.24 0.33 1.33 1.03 93 93
sd(sex2) 1.39 0.16 1.09 1.69 1.02 210 262

Regression Coefficients:

Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk ESS Tail ESS
Intercept 6.28 0.23 5.85 6.74 1.00 635 490
sex2 2.05 0.34 1.39 2.67 1.00 636 698

Further Distributional Parameters:
Estimate Est.Error 1-95J, CI u-95% CI Rhat Bulk_ESS Tail_ESS

sigma 1.49 0.17 1.15 1.76 1.05 22 53

Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
and Tail_ESS are effective sample size measures, and Rhat is the potential

scale reduction factor on split chains (at convergence, Rhat = 1).

We can see the model estimate variance for both sexes. However, the residual level or sigma is not splitted by sexes.

A futher and more complex code need to be performed, thus we can estimate the sex-specific heritability.

bf_ml1.5 <- bf(

bwt ~ 1 + sex + (0 + sex || gr(animal, cov = Amat)) + (0 + sex || mother) + (0 + sex || byear),

sigma ~ sex - 1

brms m1.5 <- brm(bf ml.5,
data = gryphon,
data2 = list(Amat = Amat),

family = gaussian(),
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chains = 1, cores = 1, iter = 1000

save(brms ml1.5, file = "data/brms m1 5.rda")

To save time, the results of the calculation is stored in the spare file brms_m1_4.rda".

load("data/brms_ml_5.rda")

summary (brms_m1.5)

Warning: Parts of the model have not converged (some Rhats are > 1.05). Be
careful when analysing the results! We recommend running more iterations and/or

setting stronger priors.

Family: gaussian
Links: mu = identity; sigma = log
Formula: bwt ~ 1 + sex + (0 + sex || gr(animal, cov = Amat)) + (0 + sex || mother) + (0 + sex ||
sigma ~ sex - 1
Data: gryphon (Number of observations: 854)
Draws: 1 chains, each with iter = 1000; warmup = 500; thin = 1;

total post-warmup draws = 500

Multilevel Hyperparameters:
~animal (Number of levels: 854)

Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk ESS Tail ESS
sd(sex1) 1.56 0.29 1.02 2.09 1.17 4 30
sd(sex2) 1.61 0.41 0.52 2.08 1.36 2 21

~byear (Number of levels: 34)

Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk_ESS Tail_ ESS
sd(sex1) 0.91 0.18 0.59 1.36 1.01 153 229
sd(sex2) 1.06 0.20 0.75 1.49 1.00 170 143

~mother (Number of levels: 394)
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Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
sd(sex1) 0.88 0.21 0.41 1.256 1.01 73 134
sd(sex2) 1.27 0.18 0.88 1.59 1.01 31 64

Regression Coefficients:

Estimate Est.Error 1-95j CI u-95J% CI Rhat Bulk_ESS Tail ESS

Intercept 6.29 0.23 5.88 6.75 1.00 209 313
sex2 2.02 0.31 1.49 2.66 1.00 127 296
sigma_sexl 0.22 0.21 -0.25 0.54 1.15 5 12
sigma_sex2 -0.20 0.40 -0.82 0.54 1.59 2 15

Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
and Tail_ESS are effective sample size measures, and Rhat is the potential

scale reduction factor on split chains (at convergence, Rhat = 1).

#

Var.table <- as_draws_df (brms m1.5)

Var.table$h.bwt.f <- as.mcmc((Var.table$sd_animal sex1)”2 / ((Var.table$sd_animal _sexl)"2 + (Va
Var.table$h.bwt.m <- as.mcmc((Var.table$sd_animal_ _sex2)"2 / ((Var.table$sd_animal _sex2)~2 + (Va

summary (Var.table$h.bwt.f)

Iterations = 1:500
Thinning interval = 1
Number of chains =1

Sample size per chain = 500

1. Empirical mean and standard deviation for each variable,

plus standard error of the mean:

Mean SD Naive SE Time-series SE

0.575443 0.126621 0.005663 0.031251

2. Quantiles for each variable:
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2.5% 25% 50% 75% 97.5%
0.3075 0.4863 0.5811 0.6741 0.7800

summary (Var.table$h.bwt.m)

Iterations = 1:500
Thinning interval = 1
Number of chains =1

Sample size per chain = 500

1. Empirical mean and standard deviation for each variable,

plus standard error of the mean:

Mean SD Naive SE Time-series SE

0.463879 0.155395 0.006949 0.078323

2. Quantiles for each variable:

2.5% 257, 50% 75%  97.5%
0.06693 0.43668 0.50150 0.55729 0.66016

plot(Var.table$h.bwt.f)
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plot(Var.table$h.bwt.m)
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Here, we can plot the point estimates of the h? which seems to differ between sexes, but their CI overlaps.

h2.sex <- rbind(

cbind (summary(Var.table$h.bwt.f)$statistics[1], summary(Var.table$h.bwt

cbind(summary(Var.table$h.bwt.m)$statistics[1], summary(Var.table$h.bwt

plot(c(0.95, 1.05) ~ h2.sex[, 1], xlim = c(0, 0.8), ylim = c(0.5, 1.5),
arrows(y0 = 0.95, x0 = h2.sex[1, 2], y1

arrows(y0 = 1.05, x0O = h2.sex[2, 2], yi

0.95, x1 = h2.sex[1, 3], code

1.05, x1 = h2.sex[2, 3], code

b

.f)$quantiles[1], summar

.m)$quantiles[1], summar

xlab = "", ylab = "", c

3, angle = 90, length

3, angle = 90, length =
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mtext ("Narrow-sense heritability (xCI)", side = 1, las = 1, adj = 0.4, line = 3, cex = 1.6)

axis(2, at = 1, labels = c("birth weight"), las = 3, cex.axis = 1.6)
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Figure 4.1.: Female and male heritability of birth weight

4.0.6. Modification of model parameter

Unfortunately (to our knowledge), it is not possible to alter the variance matrices and refit them within the model.

4.0.7. Covariance between two random effects

Some research questions require to estimate the covariance between two random effects within a univariate
model. Unfortunately (to our knowledge), it is not possible to create a covariance between distinct random effects
(https://github.com/paul-buerkner/brms/issues/502). However,a multi-membership model can be fit using the

linking.function mm, thus forcing the variance of two variables to be equal and the covariance to 1.
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Multivariate animal model
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This tutorial will demonstrate how to run a multivariate animal model looking at birth weight and tarsus length of

the phenomenal gryphons.

Scenario and data

Scenario

Since natural selection rarely acts on single traits, to understand how birth weight might evolve in our population
of gryphons, we may also want to think about possible covariance with other traits. If tarsus length at fledging is
also under positive selection, what implications does it have for birth weight and vice versa? If the two traits are
positively genetically correlated then this will facilitate evolution of larger size (since response of one trait will
induce a positively correlated response in the other). If there is negative genetic covariance then this could act as an

evolutionary constraint.

Using multivariate models allows the estimation of parameters relating to each trait alone (i.e. V4, h?, etc), but also
yields estimates of covariance components between traits. These include the (additive) genetic covariance COV 4
which is often rescaled to give the additive genetic correlation r 4. However, covariance can also arise through other

random effects (e.g. maternal covariance) and these sources can also be explicitly modeled in a bivariate analysis.

gryphon files

gryphonpedigree and phenotypic data files are the same as those used in tutorial 1 (i.e, gryphonped.csv and

gryphon. csv respectively).

Reading the data

gryphon <- read.csv("data/gryphon.csv")
gryphon$animal <- as.factor(gryphon$animal)
gryphon$mother <- as.factor(gryphon$mother)
gryphon$byear <- as.factor(gryphon$byear)
gryphon$sex <- as.factor(gryphon$sex)
gryphon$bwt <- as.numeric(gryphon$bwt)

gryphon$tarsus <- as.numeric(gryphon$tarsus)

Reading the pedigree
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Scenario and data

gryphonped <- read.csv("data/gryphonped.csv")
gryphonped$id <- as.factor(gryphonped$id)
gryphonped$father <- as.factor(gryphonped$father)

gryphonped$mother <- as.factor (gryphonped$mother)
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Asreml|-R

5.0.1. Running the model

First we need to load the asreml library:

library(asreml)

Loading required package: Matrix

Attaching package: 'Matrix'

The following objects are masked from 'package:tidyr':

expand, pack, unpack
Online License checked out Fri Apr 5 15:37:37 2024
Loading ASReml-R version 4.2

For running multivariate analyses in ASReml-R, the code is slightly more complex than for the univariate case.
This is because ASReml-R allows us to make different assumptions about the way in which traits might be related.
We need to explicitly specify a covariance structure with difference covariance functions us (), idh () or corgh()
which for example would estimate an unconstrained (co)variance matrix, an identity matrix and a variance and

correlation matrix repestively. We can also specify some starting values for the variance matrices. These can be
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very approximate guestimates or not at all, but having reasonable starting values can help convergence. It is also
possible to let the model running without specifying starting values. Finally, we have increased the default maximum
number of iterations (maxiter) which can help to achieve convergence for more complicated models. Another way
to increase the number of iteration will be to use the update function. Notes that if the LogLik is not stabilized

after several iterations, it is good indication of the model require more iteration.

ainv <- ainverse(gryphonped)

modela <- asreml(
fixed = cbind(bwt, tarsus) ~ trait,
random = ~ us(trait, init = c(1, 0.1, 1)):vm(animal, ainv),
residual = ~ id(units):us(trait, init = c(1, 0.1, 1)),
data = gryphon,
na.action = na.method(x = "include", y = "include"),

maxit = 20

ASReml Version 4.2 05/04/2024 15:37:37

LogLik Sigma2 DF wall
1 -7108.741 1.0 1535  15:37:37
2 -5837.803 1.0 1535 15:37:37
3 -4437.495 1.0 1535 15:37:37
4 -3459.378 1.0 1535  15:37:37
5 -2914.034 1.0 1535 15:37:37
6 -2729.131 1.0 1535 15:37:37
7 —-2684.659 1.0 1535 15:37:37
8 -2679.838 1.0 1635  15:37:37
9 -2679.742 1.0 1535 15:37:37
10 -2679.741 1.0 1535 15:37:37

modela <- update(modela)

ASReml Version 4.2 05/04/2024 15:37:37
LogLik Sigma2 DF wall
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1 -2679.741 1.0 1535 15:37:37
2 -2679.741 1.0 1535 15:37:37

modela has fitted a bivariate model of bwt and tarsus, with the mean for each of the traits as a fixed effect (trait).
The additive genetic variance-covariance matrix (G) is unstructured (us; i.e. all elements are free to vary) and
the starting values for V, for bwt, COV between bwt and tarsus, and V), for tarsus are set to 1, 0.1 and 1,

respectively. Similarly, the residual matrix is unstructured and uses the same starting values.

Note that the argument na.action = na.method(x = "include", y = "include") can be added to the
model. In a bivariate model, it will help calculate the covariance between two traits with different missing in-
formation NA and so help imbalance phenotypage and save sample size. However, it is important to scale ( mean =0,

var =1) the two traits to correctly adjust the model(see Asreml-R manual for more information).

Let’s have a look at the variance components, and notice that there are now seven (co)variance components reported

in the table:

summary (modela) $varcomp

component std.error =z.ratio bound

trait:vm(animal, ainv)!trait_bwt:bwt 3.368397 0.6348307 5.305977 P
trait:vm(animal, ainv)!trait_tarsus:bwt 2.459809 1.0732644 2.291895 P
trait:vm(animal, ainv)!trait_tarsus:tarsus 12.345792 3.0744285 4.015638 P
units:trait!R 1.000000 NA NA F
units:trait!trait_bwt:bwt 3.849916 0.5200101 7.403541 P
units:trait!trait_tarsus:bwt 3.313282 0.9129234 3.629310 P
units:trait!trait_tarsus:tarsus 17.646432 2.6670380 6.616491 P
%ch

trait:vm(animal, ainv)!trait_bwt:bwt
trait:vm(animal, ainv) !trait_tarsus:bwt
trait:vm(animal, ainv) !trait_tarsus:tarsus
units:trait!R

units:trait!trait_bwt:bwt

units:trait!trait_tarsus:bwt

O O O O O o o

units:trait!trait_tarsus:tarsus
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The first three terms are related to the genetic matrix and, in order are Vy .., COVy, Vg 141.60,5- Below is again a
line where the units:traitr!R component equals to 1, which again can be ignored. The final three terms relate to
the residual matrix and correspond to Vg, ..., COVp, Vi 14,5 Based on our quick and dirty check (is z. ratio

> 1.967) all components look to be statistically significant.

We can calculate the genetic correlation as COV / \/ Vabwt * Va tarsus- Thus this model gives an estimate of r 4

= 0.38. It is also possible to estimate the residual correlation r,.., = 0.4.

Both correlations are distinct in nature. The genetic correlation reflects how much the traits are linked by genetic via
polygenic effect or linkage desequilibrium, whereas the residual correlation reflects the environmental correlation or

errors measurement correlation.

Although we can calculate this by hand, we can also use vpredict (), which also provides an (approximate) standard

€Iror:

vpredict (modela, r_A ~ V2 / sqrt(Vli * V3))

Estimate SE

r_A 0.3814436 0.1299759

vpredict (modela, r_res ~ V6 / sqrt(V5 * V7))

Estimate SE

r_res 0.4019799 0.08607104

Of course we can also calculate the heritability of bwt and tarsus from this model:

vpredict (modela, h2.bwt ~ V1 / (V1 + V5))

Estimate SE

h2.bwt 0.466646 0.07671533

vpredict (modela, h2.tarsus ~ V3 / (V3 + V7))

Estimate SE

h2.tarsus 0.4116331 0.09305863
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5.0.2. Adding fixed and random effects

Fixed and random effects can be added just as for the univariate case. Given that our full model of bwt from tutorial 1

had sex as a fixed effect as well as birth year and mother as random effects, we could specify a bivariate formulation

with the same complexity:

mo

AS

[y

© 00 N O O b w N

mo

AS

delb <- asreml(
fixed = cbind(bwt, tarsus) ~ trait + at(trait):sex,

random = ~ us(trait, init = c(1, 0.1, 1)):vm(animal, ainv) +

us(trait, init c(1, 0.1, 1)):byear +

us(trait, init = c(1, 0.1, 1)) :mother,
residual = ~ id(units):us(trait, init = c(1, 0.1, 1)),
data = gryphon,

na.action = na.method(x = "include", y = "include"),

maxit = 20

Reml Version 4.2 05/04/2024 15:37:37
LogLik Sigma?2 DF wall
-4672.301 1.0 1533 15:37:37
-4005.616 1.0 1533 15:37:38
-3271.484 1.0 1533 15:37:38 ( 1 restrained)
-2761.414 1.0 1533 15:37:38 ( 1 restrained)
-2481.355 1.0 1533 15:37:38
-2395.858 1.0 1533 15:37:38
-2381.050 1.0 1533 15:37:38
-2380.251 1.0 1533 15:37:38
-2380.246 1.0 1533 15:37:38

delb <- update(modelb)

Reml Version 4.2 05/04/2024 15:37:38
LogLik Sigma2 DF wall
-2380.246 1.0 1533 15:37:38
-2380.246 1.0 1533 15:37:38
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Note that we have specified a covariance structure for each random effect and an estimate of the effect of sex on both

birth weight and tarsus length.

There will now be thirteen (co)variance components reported after running the code:

summary (modelb) $varcomp

component std.error z.ratio
trait:byear!trait_bwt:bwt 0.9746385 0.2825727 3.4491602
trait:byear!trait_tarsus:bwt 0.1624076 0.4185079 0.3880635
trait:byear!trait_tarsus:tarsus 3.7383721 1.2065992 3.0982716
trait:mother!trait_bwt:bwt 1.1445184 0.2302182 4.9714512
trait:mother!trait_tarsus:bwt -1.5567306 0.4051848 -3.8420260
trait:mother!trait_tarsus:tarsus 4.8206132 1.3201300 3.6516202
trait:vm(animal, ainv)!trait_bwt:bwt 1.9893546 0.4410246 4.5107569
trait:vm(animal, ainv)!trait_tarsus:bwt 3.3170404 0.9032323 3.6724110
trait:vm(animal, ainv)!trait_tarsus:tarsus 10.2294887 2.8077066 3.6433610
units:trait!R 1.0000000 NA NA
units:trait!trait_bwt:bwt 1.8443110 0.3443178 5.3564203
units:trait!trait_tarsus:bwt 4.0142841 0.7412540 5.4155308
units:trait!trait_tarsus:tarsus 12.4845955 2.2893363 5.4533690

bound Ych

trait:byear!trait_bwt:bwt P

trait:byear!trait_tarsus:bwt
trait:byear!trait_tarsus:tarsus
trait:mother!trait_bwt:bwt
trait:mother!trait_tarsus:bwt
trait:mother!trait_tarsus:tarsus
trait:vm(animal, ainv)!trait_bwt:bwt
trait:vm(animal, ainv) !trait_tarsus:bwt
trait:vm(animal, ainv) !trait_tarsus:tarsus
units:trait!R

units:trait!trait_bwt:bwt

units:trait!trait_tarsus:bwt

Y YW ‘v ™o w9 W W W W W W ©
O O O O O O O o o o o o o

units:trait!trait_tarsus:tarsus
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we can estimate the different correlations using vpredict:

vpredict (modelb, r_byear ~ V2 / sqrt(Vl * V3))

Estimate SE

r_byear 0.08508312 0.2134209

vpredict(modelb, r M ~ V5 / sqrt(V4 * V6))

Estimate SE

r_M -0.6627518 0.2487963

vpredict (modelb, r_A ~ V8 / sqrt(V7 * V9))

Estimate SE

r_A 0.7353053 0.1094747

vpredict (modelb, r_res ~ V12 / sqrt(V1il * V13))

Estimate SE

r_res 0.8365729 0.07366762

Now we can look at the fixed effects parameters and assess their significance with a conditional Wald F-test:

solution std error z.ratio
trait_bwt 6.3844483 0.2328210 27.4221324
trait_tarsus 20.5936436 0.5098944 40.3880569
at(trait, 'bwt'):sex_1 0.0000000 NA NA
at(trait, 'bwt'):sex_2 1.9502053 0.1480467 13.1729086
at(trait, 'tarsus'):sex_1 0.0000000 NA NA

at(trait, 'tarsus'):sex_2 -0.0684413 0.3823448 -0.1790041

ASReml Version 4.2 05/04/2024 15:37:38

LogLik Sigma2 DF wall
1 -2380.246 1.0 1533  15:37:38
2 -2380.246 1.0 1533 15:37:38
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tr

at

at

Df denDF F.inc F.con Margin Pr

ait 2 b52.6 1396.00 1396.00 0.00000
(trait, 'bwt'):sex 1 812.8 298.40 173.50 B 0.00000
(trait, 'tarsus'):sex 1 747.9 0.03 0.03 B 0.85798

Note that it is possible to specify a fixed effect to a specific trait by adding the number of order within cbind inside the

argument at (trait,x). For example, here we apply the fixed effect sex only to the response variable tarsus.

mo

AS

© 00 N O O b W N

e
o

delb 2 <- asreml(

fixed = cbind(bwt, tarsus) ~ trait + at(trait, 2):sex,

random = ~ us(trait, init = c(1, 0.1, 1)):vm(animal, ainv) +
us(trait, init = c(1, 0.1, 1)):byear +
us(trait, init = c(1, 0.1, 1)) :mother,

residual = ~ id(units):us(trait, init = c(1, 0.1, 1)),

data = gryphon,

na.action = na.method(x = "include", y = "include"),

maxit = 20

Reml Version 4.2 05/04/2024 15:37:38
LogLik Sigma2 DF wall
-4810.563 1.0 1534 15:37:39
-4129.799 1.0 1534 15:37:39
-3382.529 1.0 1534 15:37:39 ( 1 restrained)
-2864.076 1.0 1534 15:37:39
-2574.891 1.0 1534 15:37:39
-2478.879 1.0 1534 15:37:39
-2458.305 1.0 1534 15:37:39
-2456.425 1.0 1534 15:37:39
-2456.377 1.0 1534 15:37:39
-2456.376 1.0 1534 15:37:39

solution std error z.ratio
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trait_bwt 7.636226 0.2389515 31.95722
trait_tarsus 22.703658 0.4827348 47.03133
at(trait, 'tarsus'):sex_1 0.000000 NA NA

at(trait, 'tarsus'):sex_2 -3.267042 0.2953279 -11.06242

ASReml Version 4.2 05/04/2024 15:37:39

LogLik Sigma?2 DF wall
1 -2456.376 1.0 1534  15:37:39
2 -2456.376 1.0 1534 15:37:39

Df denDF F.inc F.con Margin Pr
trait 2 50.7 1233.0 1233.0 0

at(trait, 'tarsus'):sex 1 522.9 122.4 122.4 B 0

5.0.3. Significance testing

Under the model above 7, is estimated as -0.66 and the z.ratio associated with the corresponding covariance
(COV,,) is >2 (in absolute terms). We might therefore infer that there is evidence for a strong negative correlation
between the traits with respect to the mother and that while maternal identity explains variance in both traits those

mothers that tend to produce heavier offspring actually tend to produce offspring with shorter tarsus lengths.

To formally test if COV/,, is significantly different from zero, we can compare the log-likelihood for this model:

modelb$loglik

[1] -2380.246

to a model in which we specify that COV),,=0. Since this constraint reduces the number of parameters to be estimated
by one, we can use a likelihood ratio test (LRT) with one degree of freedom. To run the constrained model, we
modify the G structure defined for the mother random effect to diagonal (diag), which means we only estimate the

variances (the diagonal of the matrix) but not the covariance (the covariance are fixed to 0):
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modelc <- asreml(

fixed = cbind(bwt, tarsus) ~ trait + at(trait):sex,

random = ~ us(trait, init = c(1, 0.1, 1)):vm(animal, ainv) +
us(trait, init = c(1, 0.1, 1)) :byear +
diag(trait, init = c(1, 1)) :mother,

residual = ~ id(units):us(trait, init = c(1, 0.1, 1)),

data = gryphon,

na.action = na.method(x = "include", y = "include"),

maxit = 20

ASReml Version 4.2 05/04/2024 15:37:39

LogLik Sigma2 DF wall
1 -4677.820 1.0 1533 15:37:39
2 -4010.442 1.0 1533 15:37:39
3 -3275.409 1.0 15633  15:37:40
4 -2763.519 1.0 1533 15:37:40
5 -2483.732 1.0 1533 15:37:40
6 -2400.242 1.0 15633  15:37:40
7 -2386.663 1.0 1533  15:37:40
8 -2386.049 1.0 1533 15:37:40
9 -2386.045 1.0 15633  15:37:40

You can run summary (modelc) $varcomp to confirm this worked. We can now obtain the log-likelihood of this

model and compare this to that of modelb using a likelihood ratio test:

modelc$loglik

[1] -2386.045

We can see that the model log-likelihood is now -2386.05. And comparing the models using a likelihood ratio test:
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2 * (modelb$loglik - modelc$loglik)

[1] 11.59835

So our chi-square test statistic is X%= 11.6. The p-value that goes with this is obtained by:

1 - pchisq(2 * (modelb$loglik - modelc$loglik), 1)

[1] 0.0006601037

We would therefore conclude that the maternal covariance is significantly different from zero.

We could apply the same procedure to show that the residual (environmental) covariance and the genetic covariance
estimates are significantly greater than zero (i.e., heavier individuals tend to have longer tarsus lengths). In contrast,

we should find that the byear covariance between the two traits is non-significant.

modeld <- asreml(

fixed = cbind(bwt, tarsus) ~ trait + at(trait):sex,

random = ~ us(trait, init = c(1, 0.1, 1)):vm(animal, ainv) +
diag(trait, init = c(1, 1)):byear +
us(trait, init = c(1, 0.1, 1)) :mother,

residual = ~ id(units):us(trait, init = c(1, 0.1, 1)),

data = gryphon,

na.action = na.method(x = "include", y = "include"),

maxit = 20

ASReml Version 4.2 05/04/2024 15:37:40

LogLik Sigma2 DF wall
1 -4672.708 1.0 1533 15:37:40
2 -4005.954 1.0 1533 15:37:40
3 -3271.738 1.0 1533 15:37:40 ( 1 restrained)
4 -2761.626 1.0 1533 15:37:40 ( 1 restrained)
5 -2481.647 1.0 1533 15:37:40
6 -2395.992 1.0 1533  15:37:40
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7

2

[1

1

[1

-2381.136 1.0 1533 15:37:40
-2380.331 1.0 1533 15:37:40
-2380.326 1.0 1533 15:37:40

* (modelb$loglik - modeld$loglik)

1 0.1600641

- pchisq(2 * (modelb$loglik - modeld$loglik), 1)

1 0.6890975

5.0.4. Estimate directly the genetic correlation within the model

Within Asreml-r, different matrix structure can be specify such as us,corg, diag, etc (cf see the Asreml-r guide).

Instead of the fitting an unstructured matrix with the argument us or a reduced model with no covariance with the

argument diag, we can also directly estimate the genetic correlation between the bwt and tarsus with corgh.

Here we decide to estimate directly the additive genetic correlation.

mo

AS

1
2

dele <- asreml(

fixed = cbind(bwt, tarsus) ~ trait + at(trait):sex,

random = ~ corgh(trait, init = c(0.1, 1, 1)):vm(animal, ainv) +
us(trait, init = c(1, 0.1, 1)):byear +
us(trait, init = c(1, 0.1, 1)) :mother,

residual = ~ id(units):us(trait, init = c(1, 0.1, 1)),

data = gryphon,

na.action = na.method(x = "include", y = "include"),

maxit = 20

Reml Version 4.2 05/04/2024 15:37:40
LogLik Sigma2 DF wall
-4672.301 1.0 1533 15:37:40
-4003.183 1.0 1533 15:37:41
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© 0 N o o > W

modele

ASReml

summar

trait
trait
trait
trait
trait
trait
trait:
trait:
trait:
units:
units:
units:

units:

trait

trait

-3266.521 1.0 1533 15:37:41 (
-2757.188 1.0 1533 15:37:41 (
-2479.291 1.0 1533 15:37:41
-2395.476 1.0 1533 15:37:41
-2381.026 1.0 1533 15:37:41
-2380.251 1.0 1533 15:37:41
-2380.246 1.0 1533 15:37:41

<- update(modele)

Version 4.2 05/04/2024 15:37:41

LogLik Sigma?2 DF wall
-2380.246 1.0 15633  15:37:41
-2380.246 1.0 1533 15:37:41

y(modele) $varcomp

:byear!trait_bwt:bwt 3

:byear!trait_tarsus:bwt 0

1 restrained)

1 restrained)

component
:byear!trait_bwt:bwt 0.9746386
:byear!trait_tarsus:bwt 0.1624071
:byear!trait_tarsus:tarsus 3.7383734
:mother!trait_bwt:bwt 1.1445186
:mother!trait_tarsus:bwt -1.5567316
:mother!trait_tarsus:tarsus 4.8206154
vm(animal, ainv)!trait!tarsus:!trait!bwt.cor 0.7353061
vm(animal, ainv)!trait_bwt 1.9893543
vm(animal, ainv) !trait_tarsus 10.2294850
trait!R 1.0000000
trait!trait_bwt:bwt 1.8443112
trait!trait_tarsus:bwt 4.0142825
trait!trait_tarsus:tarsus 12.4845977

.449159
.388062

std.error

0.
2.

.2825728
.4185082
.2066018
.2302183
.4051850
.3201324
.1094807
.4410243
.8077055

NA

.3443178

7412540
2893355

z.ratio bound %ch

P 0
P 0
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trait:byear!trait_tarsus:tarsus 3.098266

trait:mother!trait_bwt:bwt 4.971450
trait:mother!trait_tarsus:bwt -3.842027
trait:mother!trait_tarsus:tarsus 3.651615

trait:vm(animal, ainv)!trait!tarsus:!trait!bwt.cor 6.716310

‘Y 9 9 ™M W Y o W W W U
O O O O O O o o o o o

trait:vm(animal, ainv) !trait_bwt 4.510758
trait:vm(animal, ainv)!trait_tarsus 3.643361
units:trait!R NA
units:trait!trait_bwt:bwt 5.356422
units:trait!trait_tarsus:bwt 5.415529
units:trait!trait_tarsus:tarsus 5.453372

It is important to note that using corgh change the order of the estimate (co)variance/correlation. Thus, the initial
values need to be reorder and all different calculation need to be adjust in consequence. It is also important to check

the difference between the model with us and corgh to make sure any mistake are made.

summary (modelb)$loglik

[1] -2380.246

summary (modele) $loglik

[1] -2380.246

There two main advantages to use corgh: first, a direct estimation of correlation within the G matrix can avoid
mistake in the vpredict calculation; second, it is possible to test if the correlation is significantly different than O
(similar result as LRT with the covariance) but also to -1 and 1 which correspond of the correlation boundaries. The
following code showed how to create a reduced model with the correlation close to 1 and compared to the initial

model. Since we compared the correlation to its boundary, the degree of freedom is only half as a one tail LTR.

MODEL_MODIF <- update.asreml(modele, start.values = T)
G_MOD <- MODEL_MODIF$vparameters.table[(1:9), ]
G_MOD[1, 2] <- 0.99999

G_MOD[1, 3] <- "F"
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modele.red <- asreml(
fixed = cbind(bwt, tarsus) ~ trait + at(trait) :sex,

random = ~ corgh(trait, init = c(0.1, 1, 1)):vm(animal, ainv) +

us(trait, init c(1, 0.1, 1)) :byear +

us(trait, init = c(1, 0.1, 1)) :mother,

residual = ~ id(units):us(trait, init = c(1, 0.1, 1)),
data = gryphon,

na.action = na.method(x = "include", y = "include"),

maxit = 20,

G.param = G_MOD

ASReml Version 4.2 05/04/2024 15:37:41

LogLik Sigma2 DF wall
1 -2545.233 1.0 1533 15:37:41
2 -2483.883 1.0 1533  15:37:41
3 -2423.504 1.0 1533  15:37:41
4 -2392.509 1.0 1533 15:37:41
5 -2383.661 1.0 1533  15:37:41
6 -2383.084 1.0 1533  15:37:41
7 -2383.033 1.0 1533  15:37:41
8 -2383.022 1.0 1533  15:37:41
9 -2383.019 1.0 1533  15:37:41
10 -2383.019 1.0 1533  15:37:41

2 * (modele$loglik - modele.red$loglik)

[1] 5.544679

1 - pchisq(2 * (modele$loglik - modele.red$loglik), df = 0.5)

[1] 0.006598676

Here, the correlation is significantly different than 1 (~0.99999).
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5.0.5. Visualisation of the correlation (aka BLUP extraction)

When estimating correlation between traits, having a visualization of it can help the interpretation. In addition,
visualizing the correlation can spot outliers in the dataset. Thanks to mixed model, each breeding values is stored
within the model and can be extract as BLUP (Best Linear Unbiased Predictor).BLUP should be normaly distributed,

if not you need to check the assumption of your animal model.

To simplify the following code, we rename the variable T1 and T2.

gryphon$T1 <- gryphon$bwt
gryphon$T2 <- gryphon$tarsus
RURBHABHARHH
modele <- asreml(
fixed = cbind(T1, T2) ~ trait + at(trait):sex,
random = ~ corgh(trait, init = c(0.1, 1, 1)):vm(animal, ainv) +

us(trait, init = c(1, 0.1, 1)):byear +

us(trait, init c(1, 0.1, 1)) :mother,
residual = ~ id(units):us(trait, init = c(1, 0.1, 1)),
data = gryphon,

na.action = na.method(x = "include", y = "include"),

maxit = 20

ASReml Version 4.2 05/04/2024 15:37:41

LogLik Sigma2 DF wall
1 -4672.301 1.0 1533  15:37:42
2 -4003.183 1.0 1533  15:37:42
3 -3266.521 1.0 1533 15:37:42 ( 1 restrained)
4 -2757.188 1.0 1533 15:37:42 ( 1 restrained)
5 -2479.291 1.0 1533  15:37:42
6 -2395.476 1.0 1533  15:37:42
7 -2381.026 1.0 1533  15:37:42
8 -2380.251 1.0 1533  15:37:42
9 -2380.246 1.0 1533  15:37:42
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modele

ASReml

summar

trait
trait
trait
trait
trait
trait
trait
trait:
trait:
units:
units:
units:

units:

trait
trait
trait
trait
trait
trait
trait:
trait:

trait:

<- update(modele)

Version 4.2 05/04/2024 15:37:42

LogLik Sigma2 DF wall
-2380.246 1.0 1533 15:37:
-2380.246 1.0 1533 15:37:

y (modele) $varcomp

:byear!trait_T1:T1
:byear!trait_T2:T1
:byear!trait_T2:T2
:mother!trait_T1:T1
:mother!trait_T2:T1
:mother!trait_T2:T2

:vm(animal, ainv)!trait!T2:!trait!T1.cor

vm(animal, ainv)!trait_Ti1
vm(animal, ainv)!trait_T2
trait!R

trait!trait_T1:T1
trait!trait_T2:T1

trait!trait_T2:T2

:byear!trait_T1:T1
:byear!trait_T2:T1
:byear!trait_T2:T2
:mother!trait_T1:T1
:mother!trait_T2:T1

:mother!trait_T2:T2

vm(animal, ainv)!trait!T2:!trait!T1.cor
vm(animal, ainv)!trait_T1

vm(animal, ainv)!trait_T2

42
42

component

0.
0.

4.
12.

9746386
1624071

. 7383734
.1445186
.5567316
.8206154
.7353061
.9893543
.2294850
.0000000
.8443112

0142825
4845977

bound Y%ch

P

O O O O O o o o o

Y 9 © W 'wWw 9w w9

std.error
0.2825728
0.4185082
1.2066018
0.2302183
0.4051850

[EY

.3201324
.1094807
.4410243

N O O

.8077055

NA
0.3443178
0.7412540
2.2893355

z.ratio

3.
0.
3.
4.

w

w P O W

449159
388062
098266
971450

.842027
.651615
.716310
.510758
.643361

NA

.356422
.415529
.453372
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units:trait!R
units:trait!trait_T1:T1

units:trait!trait_T2:T1

' ' v T
o O O o

units:trait!trait_T2:T2

RUABHARHALHH
DvsS <- data.frame(
Trait = rownames(modele$coefficients$random),
BLUP = modele$coefficients$random,
SE = sqrt(modele$vcoeff$random * modele$sigma?2)
)
DvsS$ID <- substr(DvsS$Trait, 27, 30)
DvsS$TRAIT <- substr(DvsS$Trait, 7, 8)
DvsS <- DvsS[927:3544, ] # keep only row associated to animal

summary (factor (DvsS$TRAIT)) # 1309 each

T1 T2
846 1772

#
DvsS$Trait <- NULL
colnames (DvsS) [1] <- "BLUP"

BLUPS <- reshape(DvsS, v.names = c("BLUP", "SE"), idvar = "ID", timevar = "TRAIT", direction = "w

Warning in reshapeWide(data, idvar = idvar, timevar = timevar, varying

varying, : multiple rows match for TRAIT=T1: first taken

Warning in reshapeWide(data, idvar = idvar, timevar = timevar, varying

varying, : multiple rows match for TRAIT=T2: first taken

nrow (BLUPS)

[1] 1310
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rownames (BLUPS) <- c()

colnames (BLUPS) <- c("ID", "BLUP.btw", "SE.btw", "BLUP.tarsus", "SE.tarsus")

summary (BLUPS)
ID BLUP.btw SE.btw BLUP.tarsus
Length:1310 Min. :-2.3778  Min. :0.7494  Min. :-6.34104

Class :character 1st Qu.:-0.5797 1st Qu.:0.9993 1st Qu.:-1.14403

Mode :character Median : 0.0350 Median :1.0223 Median :-0.02524
Mean :-0.0082 Mean :1.0640 Mean : 0.02189
3rd Qu.: 0.5911 3rd Qu.:1.0552 3rd Qu.: 1.17735
Max. : 3.0123 Max. :1.4377  Max. : 6.71502
NA's 1926 NA's 1926

SE.tarsus

Min. :1.616

1st Qu.:2.371

.451

Median :

.810

2
2
Mean :2.576
3rd Qu.:2

3

Max. .287

# write.csv(BLUPS,file="BLUPS 6x6.csv",row.names=F)
BUBBHARHALHH

par (mfrow = c(2, 2))

hist (BLUPS$BLUP.btw)

qqnorm(BLUPS$BLUP . btw)

qqline (BLUPS$BLUP.btw)

hist (BLUPS$BLUP.tarsus)

qgqnorm (BLUPS$BLUP. tarsus)

gqline (BLUPS$BLUP. tarsus)
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Histogram of BLUPS$BLUP.btw Normal Q-Q Plot

(%]
2
> -
g 5
9] 1 T T T 1 = T T T 1
. -2 01 2 3 E 3 -10 1 2 3
n
BLUPS$BLUP.btw Theoretical Quantiles
Histogram of BLUPS$BLUP.tarsus & Normal Q-Q Plot
> -
g 5
I TSN 1 s - 2
9] 1 T T T T 1 = ! T 1T T 1
. 6 2 2 4 6 E 3 -10 1 2 3
n
BLUPS$BLUP.tarsus Theoretical Quantiles
#
Here, some simple code to plot the genetic correlation.
plot (BLUP.tarsus ~ BLUP.btw, BLUPS, xlab = "", ylab = "", las = 1.2, bty = "o", col = "white")

arrows (x0 BLUPS$BLUP.btw, yO = BLUPS$BLUP.tarsus - BLUPS$SE.tarsus, x1 BLUPS$BLUP.btw, yl = B

arrows (x0 BLUPS$BLUP.btw - BLUPS$SE.btw, yO = BLUPS$BLUP.tarsus, x1 = BLUPS$BLUP.btw + BLUPS$SE

points(BLUP.tarsus ~ BLUP.btw, BLUPS, pch 16, col = "red", cex = 1.5)
points(BLUP.tarsus ~ BLUP.btw, BLUPS, pch = 1, col = rgb(0, 0, 0, 0.3), cex = c(1.5))
mtext ("btw (BV+SE)", side = 1, line = 2.4)

mtext ("tarsus (BV+SE)", side = 2, line = 2, las = 3)

mtext (expression(paste(italic(r) [A], 0.7353065 + 0.1094838")), side = 1, line = -1, adj = 0.

6
w

2 4
32
Q0
3 -2
S-4

6 ra=0.7353065 + 0.1094838

| | | | | |

-2 -1 0 1 2 3

btw (BV+SE)
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5.0.6. Partitionning (co)variance between groups

Similar to the univariate model, it is possible to partition the variance and also the covariance between different
groups within the dataset. Here, we can estimate sex-specific genetic correlation. Note, to partition a correlation, it

is require to have important sample size within each group. For this example, we simplify the model !

gryphon <- gryphon[order (gryphon$sex), ]
model sex <- asreml(
fixed = cbind(bwt, tarsus) ~ trait + at(trait):sex,

random = ~ at(sex):us(trait, init = c(1, 0.1, 1)):vm(animal, ainv) +

us(trait, init = c(1, 0.1, 1)):byear +

us(trait, init c(1, 0.1, 1)) :mother,
residual = ~ dsum(~ id(units):us(trait) | sex),
data = gryphon,

na.action = na.method(x = "include", y = "include"),

maxit = 20

ASReml Version 4.2 05/04/2024 15:37:43

LogLik Sigma2 DF wall
1 -2522.729 1.0 1807 15:37:43 ( 1 restrained)
2 -2459.512 1.0 1807 15:37:43 (3 restrained)
3 -2408.940 1.0 1807 15:37:43
4 -2392.691 1.0 1807 15:37:43
5 -2388.962 1.0 1807 15:37:43
6 -2388.743 1.0 1807 15:37:43
7 -2388.736 1.0 1807 15:37:43
8 -2388.736 1.0 1807 15:37:43

Warning in asreml(fixed = cbind(bwt, tarsus) ~ trait + at(trait):sex, random =
~at(sex) :us(trait, : Warning : US updates modified 1 times in iteration 2 to

remain positive definite.
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model _

sex <- update(model_sex)

ASReml Version 4.2 05/04/2024 15:37:43

1
2

LogLik Sigma2
-2388.736 1.0
-2388.736 1.0

summary (model_sex) $varcomp

trait
trait
trait
trait
trait

trait:

sex_1!
sex_1!
sex_1!
sex_1!
sex_2!
sex_2!
sex_2!

sex_2!

trait:

DF wall
1807 15:37:43
1807 15:37:44

component

:byear!trait_bwt:bwt 0.9858478
:byear!trait_tarsus:bwt 0.1525063
:byear!trait_tarsus:tarsus 3.9981983
:mother!trait_bwt:bwt 1.3312734
:mother!trait_tarsus:bwt -1.6174228
mother!trait_tarsus:tarsus 4.7542338
at(sex, 'l'):trait:vm(animal, ainv)!trait_bwt:bwt 1.3402853
at(sex, 'l'):trait:vm(animal, ainv)!trait_tarsus:bwt 2.3608392
at(sex, '1'):trait:vm(animal, ainv)!trait_tarsus:tarsus 6.0625993
at(sex, '2'):trait:vm(animal, ainv)!trait_bwt:bwt 1.8645998
at(sex, '2'):trait:vm(animal, ainv) !trait_tarsus:bwt 5.0954811
at(sex, '2'):trait:vm(animal, ainv)!trait_tarsus:tarsus 14.9771870
R 1.0000000
trait_bwt:bwt 2.3079850
trait_tarsus:bwt 4.4287898
trait_tarsus:tarsus 13.4857819

R 1.0000000
trait_bwt:bwt 1.7956612
trait_tarsus:bwt 2.6340448
trait_tarsus:tarsus 9.6094528
z.ratio

byear!trait_bwt:bwt 3.4423530
byear!trait_tarsus:bwt 0.3518622

trait:

std.error

0

0.

0.

1

5

.2863878
4334263
.2798747
.2484444
.4283851
.3546517
.5670773
.1348473
.1304394
. 8888206
.0684729
.4479787

NA
.5015651
.0376370
.9284922

NA
7549779
. 7685804
.4917853

bound %ch

P 0
P 0
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Chapter 5. Asreml-R

trait:byear!trait_tarsus:tarsus
trait:mother!trait_bwt:bwt
trait:mother!trait_tarsus:bwt
trait:mother!trait_tarsus:tarsus

at(sex, 'l'):trait:vm(animal, ainv) !trait_bwt:bwt
at(sex, '1'):trait:vm(animal, ainv)!trait_tarsus:bwt
at(sex, 'l'):trait:vm(animal, ainv)!trait_tarsus:tarsus
at(sex, '2'):trait:vm(animal, ainv) !trait_bwt:bwt
at(sex, '2'):trait:vm(animal, ainv)!trait_tarsus:bwt
at(sex, '2'):trait:vm(animal, ainv)!trait_tarsus:tarsus
sex_1!R

sex_1!trait_bwt:bwt

sex_1!trait_tarsus:bwt

sex_1!trait_tarsus:tarsus

sex_2!R

sex_2!trait_bwt:bwt

sex_2!trait_tarsus:bwt

sex_2!trait_tarsus:tarsus

we can estimate the different correlations using vpredict:

vpredict (model_sex, r_byear ~ V2 / sqrt(Vi * V3))

Estimate SE

r_byear 0.07681584 0.213141

vpredict (model_sex, r M ~ V5 / sqrt(V4 * V6))

Estimate SE

r_M -0.6429092 0.248944

vpredict (model_sex, r_A.1 ~ V8 / sqrt(V7 * V9))

Estimate SE

r_A.1 0.8282059 0.1723596

NN W

N NN

.1238982
.3584371
LT756279
.5095618
.3634965
.0803144
.9366608
.0978361
.4634024
.3227724

NA

.6015657
.2681493
.6050257

NA

.3784288
.4893554
. 7497867

‘Y 9w w9 =™m <9 <9 <99 ™M <99 ©w©W W ™YW ™W ™YW W W W O

O O O O O O O O O O O o o o o o o o
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vpredict (model_sex, r_A.2 ~ V11 / sqrt(V10 * V12))

Estimate SE

r_A.2 0.9642225 0.1241668

vpredict(model_sex, r_res.l ~ V15 / sqrt(Vi4 * V16))

Estimate SE

r_res.1 0.7938355 0.07892634

vpredict (model_sex, r_res.2 ~ V19 / sqrt(Vi8 x V20))

Estimate SE

r_res.2 0.6341057 0.1894837

and the heritability too:

vpredict (model_sex, h2.bwt.1 ~ V7 / (V1 + V4 + V7 + V14))

Estimate SE

h2.bwt.1 0.2246768 0.09176827

vpredict (model_sex, h2.bwt.2 ~ V10 / (V1 + V4 + V10 + V18))

Estimate SE

h2.bwt.2 0.3119425 0.1442547

vpredict(model_sex, h2.tarsus.l ~ V9 / (V3 + V6 + V9 + V16))

Estimate SE

h2.tarsus.1 0.21422 0.1070464
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vpredict (model_sex, h2.tarsus.2 ~ V12 / (V3 + V6 + V12 + V20))

Estimate SE

h2.tarsus.2 0.4492383 0.1833858

Now we can look at the fixed effects parameters and assess their significance with a conditional Wald F-test:

solution std error z.ratio
trait_bwt 6.3779149 0.2311766 27.5889321
trait_tarsus 20.5838787 0.4942649 41.6454395
at(trait, 'bwt'):sex_1 0.0000000 NA NA
at(trait, 'bwt'):sex_2 1.9393688 0.1903239 10.1898321
at(trait, 'tarsus'):sex_1 0.0000000 NA NA

at(trait, 'tarsus'):sex_2 -0.0554799 0.4758708 -0.1165861

ASReml Version 4.2 05/04/2024 15:37:44

LogLik Sigma2 DF wall
1 -2388.736 1.0 1807 15:37:44
2 -2388.736 1.0 1807 15:37:44
Df denDF F.inc F.con Margin Pr
trait 2 44.8 1522.00 1522.00 0.00000
at(trait, 'bwt'):sex 1 137.5 220.90 103.80 B 0.00000
at(trait, 'tarsus'):sex 1 138.6 0.01 0.01 B 0.90737

To assess the significant of the covariance, a LTR test can be done with a reduced model where a specific covariance

can be fixed to O (for example the female covariance, following code).

model_modif <- update.asreml(model_sex, start.values = T)
G <- model_modif$vparameters[(1:12), ]

G$Constraint[(2)] <- "F"

G$Value[(2)] <- 0

#
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reduc.model _sex <- asreml(
fixed = cbind(bwt, tarsus) ~ trait + at(trait):sex,

random = ~ at(sex):us(trait, init = c(1, 0.1, 1)):vm(animal, ainv) +

us(trait, init c(1, 0.1, 1)) :byear +

us(trait, init = c(1, 0.1, 1)) :mother,

residual = ~ dsum(~ id(units):us(trait) | sex),

data = gryphon,

na.action = na.method(x = "include", y = "include"),

maxit = 20,

G.param = G

ASReml Version 4.2 05/04/2024 15:37:45

LogLik Sigma2 DF wall
1 -2474.972 1.0 1807 15:37:45 ( 3 restrained)
2 -2406.283 1.0 1807 15:37:45
3 -2394.010 1.0 1807  15:37:45
4 -2391.718 1.0 1807 15:37:45
5 -2391.480 1.0 1807  15:37:45
6 -2391.477 1.0 1807  15:37:45

Warning in asreml(fixed = cbind(bwt, tarsus) ~ trait + at(trait):sex, random =
~at(sex) :us(trait, : Warning : US updates modified 1 times in iteration 1 to

remain positive definite.

reduc.model_sex <- update(reduc.model_sex)

ASReml Version 4.2 05/04/2024 15:37:45

LogLik Sigma2 DF wall
1 -2391.476 1.0 1807 15:37:45
2 -2391.476 1.0 1807 15:37:45
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summary (reduc.model_sex) $varcomp

trait

trait

trait

trait

trait

trait

at(sex, '1'):trait:vm(animal, ainv)!trait_bwt:bwt
at(sex, 'l1'):trait:vm(animal, ainv)!trait_tarsus:bwt
at(sex, '1'):trait:vm(animal, ainv)!trait_tarsus:tarsus
at(sex, '2'):trait:vm(animal, ainv)!trait_bwt:bwt
at(sex, '2'):trait:vm(animal, ainv)!trait_tarsus:bwt

at(sex, '2'):trait:vm(animal, ainv)!trait_tarsus:tarsus 12.

sex_1!
sex_1!
sex_1!
sex_1!
sex_2!
sex_2!
sex_2!

sex_2!

trait
trait
trait
trait
trait

trait:

at (sex,
at (sex,

at(sex,

:byear!trait_bwt:buwt
:byear!trait_tarsus:bwt
:byear!trait_tarsus:tarsus
:mother!trait_bwt:bwt
:mother!trait_tarsus:bwt

:mother!trait_tarsus:tarsus

R

trait_bwt:bwt
trait_tarsus:bwt
trait_tarsus:tarsus
R

trait_bwt:bwt
trait_tarsus:bwt

trait_tarsus:tarsus

:byear!trait_bwt:bwt
:byear!trait_tarsus:bwt
:byear!trait_tarsus:tarsus
:mother!trait_bwt:bwt

:mother!trait_tarsus:bwt

mother!trait_tarsus:tarsus

'1'):trait:vm(animal, ainv)!trait_bwt:bwt
'1'):trait:vm(animal, ainv)!trait_tarsus:bwt

'1'):trait:vm(animal, ainv)!trait_tarsus:tarsus

component

0.
0.

4.

1.
2.

17.

0.

9794331
1428995

.0021595
.4956509
.2460057
.3945609
.5265716
.0000000
.4223969
.5835813

4288714
9349047
0000000
9539767

.3138301

3577089

.0000000
.9341439
.9467290
. 7245912

z.ratio

.4378175
.3305778
.1221444
.8240170
.8073580
.8434556
.4710530

NA
7445625

std.error

0.
0.

1.
5.

2848997
4322719

.2818624
.2568074
.4438357
.4035705
.3579555

NA

.9103795
.8671365
.0173971
.2946996

NA

.4196755
.6802598
.4730547

NA

.7416691

7370018
4025888

bound Y%ch

P 0
0
0
0
0
0
0

NA

‘Y =™ 'YW ™YW W W W

0
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at(sex, '2'):trait:vm(animal, ainv)!trait_bwt:bwt 1.8262193 P O
at(sex, '2'):trait:vm(animal, ainv) !trait_tarsus:bwt 2.1953395 P O
at(sex, '2'):trait:vm(animal, ainv)!trait_tarsus:tarsus 2.0548883 P 0
sex_1!R NA F 0
sex_1!trait_bwt:bwt 7.0387165 P 0
sex_1!trait_tarsus:bwt 9.2814981 P 0
sex_1!trait_tarsus:tarsus 7.0187323 P 0
sex_2!R NA F 0
sex_2!trait_bwt:bwt 2.6078261 P 0
sex_2!trait_tarsus:bwt 1.6964455 P 0
sex_2!trait_tarsus:tarsus 1.9850837 P 0

2 * (model_sex$loglik - reduc.model_sex$loglik)

[1] 5.481033

1 - pchisq(2 * (model_sex$loglik - reduc.model_sex$loglik), df = 1)

[1] 0.0192239

In addition, it is also possible to test the sexesif sexes has significant differences with another reduced model where

both covariance are fixed to their average values.

# code provided as an example for the moment since the model cannot run on this data
model_modif <- update.asreml(model_sex, start.values = T)
G <- model_modif$vparameters[(1:12), ]
G$fac <- factor(
c(
1, 2, 3, 4, 2, 6, # Additive genetic matrix 2 =5
7, 8, 9, # byear matrix

10, 11, 12 # mother matrix

)

Modif <- vcm.lm(~fac, data = G)
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attr(Modif, "assign") <- NULL
attr (Modif, "contrasts") <- NULL
#

reduc.model_sex_2 <- asreml(

fixed = cbind(bwt, tarsus) ~ trait + at(trait) :sex,

random = ~ at(sex):us(trait, init = c(1, 0.1, 1)):vm(animal, ainv) +

us(trait, init = c(1, 0.1, 1)) :byear +

us(trait, init c(1, 0.1, 1)) :mother,
residual = ~ dsum(~ id(units):us(trait) | sex),
data = gryphon,
na.action = na.method(x = "include", y = "include"),
maxit = 20,
G.param = G, vcm = Modif
)

reduc.model_sex_2 <- update(reduc.model_sex_2)

summary (reduc.model_sex_2) $varcomp

2 * (model_sex$loglik - reduc.model_sex_2$loglik)

1 - pchisq(2 * (model_sex$loglik - reduc.model_sex_2$loglik), d

Here a plot to visualize the overlaps of covariances.

2)

genetic.correlation.F <- vpredict(model_sex, r_A.1 ~ V8 / sqrt(V7 * V9))

genetic.correlation.M <- vpredict(model_sex, r_A.2 ~ V11 / sqrt(V10 * V12))

residual.correlation.F <- vpredict(model_sex, r_res.l ~ V15 / sqrt(V14 * V16))

residual.correlation.M <- vpredict(model_sex, r_res.2 ~ V19 / sqrt(V18 * V20))

cor.est <- rbind(genetic.correlation.F, genetic.correlation.M, residual.correlation.F, residual.c

plot(c(0.95, 1.05, 1.95, 2.05) ~ cor.est[, 1], xlim = c(0, 1.5),

arrows(y0 = 0.95, x0 = cor.est[1, 1] - cor.est[l, 2], yl =
arrows(y0 = 1.05, x0 = cor.est[2, 1] - cor.est[2, 2], yl =
arrows(y0 = 1.95, x0 = cor.est[3, 1] - cor.est[3, 2], y1 =

0.95,
1.05,

1.95,

yl
x1
x1

x1

im

= c(0.5, 2.5), xlab = "",
cor.est[1, 1] + cor.estl[1,
cor.est[2, 1] + cor.est[2,

cor.est[3, 1] + cor.est[3,
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arrows(y0 = 2.05, x0O = cor.est[4, 1] - cor.est[4, 2], yl = 2.05, x1 = cor.est[4, 1] + cor.est[4,

mtext ("Correlation (#CI)", side = 1, las = 1, adj = 0.4, line = 3, cex = 1.6)

axis(2, at = 1, labels c("genetic"), las = 3, cex.axis = 1.6)

axis(2, at = 2, labels = c("residual"), las = 3, cex.axis = 1.6)

_ — A
— _#—

I I I I
0.0 0.5 1.0 15

Correlation (zClI)

geneticesidual

By using corgh, we can extract the BLUPs and plot the sex-specific correlation.

gryphon$T1 <- gryphon$but
gryphon$T2 <- gryphon$tarsus
##H#

model _sex <- asreml(
fixed = cbind(T1, T2) ~ trait + at(trait):sex,
random = ~ at(sex):corgh(trait, init = c(0.1, 1, 1)):vm(animal, ainv) +

us(trait, init = c(1, 0.1, 1)):byear +

us(trait, init = c(1, 0.1, 1)) :mother,
residual = ~ dsum(~ id(units):us(trait) | sex),
data = gryphon,

na.action = na.method(x = "include", y = "include"),

maxit = 20

ASReml Version 4.2 05/04/2024 15:37:46
LogLik Sigma2 DF wall
1 -2522.729 1.0 1807 15:37:46 ( 2 restrained)
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-2457.
-2407.
-2394.
-2389.

-2388.

~N o o b W N

-2388.

model _sex <-

ASReml Version 4.2 05/04/2024 15:37:46

755 1.0
462 1.0
143 1.0
368 1.0
741 1.0
736 1.0

update (model_sex)

LogLik Sigma2
1 -2388.736 1.0
2 -2388.736 1.0

DvsS <- data.
Trait =

BLUP =

frame (

1807
1807
1807
1807
1807
1807

DF
1807
1807

model _sex$coefficients$random,

15:
15:

15

15:
15:
15:

15
15

37:46
37:46

:37:46

37:46
37:46
37:46

wall
:37:47
:37:47

rownames (model _sex$coefficients$random) ,

(
(
(

2 restrained)
2 restrained)

1 restrained)

SE = sqrt(model_sex$vcoeff$random * model_sex$sigma2)

) %%

filter(grepl("at\\(sex", Trait)) %>%

mutate(

ID = substr(Trait, 40, 44),

TRAIT = substr(Trait, 20, 21),

SEX = substr(Trait, 10, 10)

) %>

rename (

BLUP = "effect"

) %>h

select (BLUP:SEX)

summary (factor (DvsS$TRAIT)) # 1309 each

T1 T2
2618 2618
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BLUPS <- reshape(DvsS, v.names =

nrow (BLUPS)

[1] 2618

rownames (BLUPS) <- c()

c("BLUP", "SE"), idvar

c("ID", "SEX"), timevar

colnames (BLUPS) <- c("ID", "SEX", "BLUP.btw", "SE.btw", "BLUP.tarsus", "SE.tarsus")

summary (BLUPS)

ID

Length:2618

Class

Mode

:character

:character

BLUP. tarsus

Min.

1st Qu.

Median :

Mean

3rd Qu.:

Max.

# write.csv(BLUPS,file="BLUPS_6x6_SEX.csv",row.

=7,

:-0.

o O O O

81574
64388

.00000
.03319
. 74473
LTT778

HAABHA AR RAH

par (mfrow =

hist (BLUPS$BLUP.btw)

c(2, 2))

SEX BLUP.btw
Length:2618 Min. :—-2.669649
Class :character 1st Qu.:-0.281979
Mode :character Median : 0.000000
Mean : 0.009574
3rd Qu.: 0.295795
Max. : 2.895393
SE.tarsus

Min. :1.829

1st Qu.:2.342

Median :2.462

Mean :12.728

3rd Qu.:3.329

Max. :4.038

gqnorm (BLUPS$BLUP. btw)

qqline (BLUPS$BLUP.btw)

hist (BLUPS$BLUP.tarsus)

names=F)

SE.btw
Min. .8383
1st Qu.:0.9366
Median :1.1001
Mean .0913
3rd Qu.:1.1780
Max. L4276

"TRAIT", dire
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gqnorm (BLUPS$BLUP. tarsus)

qqline (BLUPS$BLUP.tarsus)

Histogram of BLUPS$BLUP.btw Normal Q-Q Plot

[
2
>‘ -
. g E
5 AT o w
g T T T T L T T T 1
- 3 -10 1 2 3 E 3 -1 12 3
?
BLUPS$BLUP.btw Theoretical Quantiles

Histogram of BLUPS$BLUP.tarsus . Normal Q-Q Plot

I [
-5 0 5

Frequency
0
LU
Sample Quantiles
-5

BLUPS$BLUP.tarsus Theoretical Quantiles

Here, some simple codes to plot the genetic correlation.

FEM <- subset(BLUPS, SEX == "1")

MAL <- subset(BLUPS, SEX == "2")

#

par(mfrow = c(1, 2))

#

plot (BLUP.tarsus ~ BLUP.btw, FEM, xlab = "", ylab = "", las = 1.2, bty = "o", col = "white")

arrows(x0 = FEM$BLUP.btw, yO = FEM$BLUP.tarsus - FEM$SE.tarsus, x1 = FEM$BLUP.btw, yl = FEM$BLUP.

arrows (x0 FEM$BLUP.btw - FEM$SE.btw, yO = FEM$BLUP.tarsus, x1 = FEM$BLUP.btw + FEM$SE.btw, yl =
points(BLUP.tarsus ~ BLUP.btw, FEM, pch = 16, col = "red", cex = 1.5)

points(BLUP.tarsus ~ BLUP.btw, FEM, pch = 1, col = rgb(0, 0, 0, 0.3), cex = c(1.5))

mtext ("btw (BV+SE)", side = 1, line = 2.4)

mtext ("tarsus (BV+SE)", side = 2, line = 2, las = 3)

#

plot (BLUP.tarsus ~ BLUP.btw, MAL, xlab = "", ylab = "", las = 1.2, bty = "o", col = "white")
arrows(x0 = MAL$BLUP.btw, yO = MAL$BLUP.tarsus - MAL$SE.tarsus, x1 = MAL$BLUP.btw, y1 = MAL$BLUP.
arrows(x0 = MAL$BLUP.btw - MAL$SE.btw, yO = MAL$BLUP.tarsus, x1 = MAL$BLUP.btw + MAL$SE.btw, yil =

points(BLUP.tarsus ~ BLUP.btw, MAL, pch = 16, col = "blue", cex = 1.5)
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points(BLUP.tarsus ~ BLUP.btw, MAL, pch = 1, col = rgb(0, 0, 0, 0.3), cex = c(1.5))
mtext ("btw (BV+SE)", side = 1, line = 2.4)

mtext ("tarsus (BV+SE)", side = 2, line = 2, las = 3)

~—~ 4 ~—~
m m
Ho2 +
Z Z
| —— O N
[7p] [7p]
7 7
572 s
-4

-2 0 1 2
btw (BV+SE) btw (BV+SE)

5.0.7. Between groups (co)variances and the B-matrix

Animal models are amazing model. With different group within a population, it is also possible to estimate how much
the different groups shared the same genetic via the cross-group genetic covariance. This covariance is essential to
understand ontogenic or sexual conflict, which can constraint or enhanced response to evolution. As an example, we

estimate the cross-sex genetic correlation r_{fm}

First, we need to dissociate the trait values for females and males into distinct variables. Then, we use a bivariate
model (for one trait: tarsus) and a multivariate model (for various traits: tarsus and bwt). With a multivariate

model, the cross-sex-cross trait covariance matrixis also named B matrix.

The coding is a bit complex but pretty straightforward. It is important to modify the covariance matrix at the residual

level to avoid the calculation of a cross-sex residual covariance (no individual switched sex during the experiment).

gryphon$bwt.1 <- NA
gryphon$tarsus.1 <- NA
animal <- gryphon[gryphon$sex == "1", ]$animal
for (i in unique(animal)) {
gryphon$bwt .1 [which(gryphon$animal == i)] <- gryphon$bwt [which(gryphon$animal == i)]

gryphon$tarsus.1[which(gryphon$animal == i)] <- gryphon$tarsus[which(gryphon$animal == i)]
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gryphon$bwt.2 <- NA
gryphon$tarsus.2 <- NA
animal <- gryphon[gryphon$sex == "2", ]$animal
for (i in unique(animal)) {
gryphon$bwt .2 [which(gryphon$animal == i)] <- gryphon$bwt [which(gryphon$animal == i)]

gryphon$tarsus.2[which(gryphon$animal == i)] <- gryphon$tarsus[which(gryphon$animal == i)]

BRUBBHARHALH
temp <- asreml(cbind(tarsus.l, tarsus.2) ~ trait,
random = ~ us(trait):vm(animal, ainv) +
diag(trait) :byear + diag(trait) :mother,
residual = ~ units:us(trait),
data = gryphon, na.action = na.method(y = "include", x = "include"), maxiter = 20,

start